ptrdvn commited on
Commit
61ea461
1 Parent(s): 85bbfa9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 4bit AWQ version of the [lightblue/Karasu-Mixtral-8x22B-v0.1](https://huggingface.co/lightblue/Karasu-Mixtral-8x22B-v0.1) model.
2
+
3
+ Quantized using the following code:
4
+
5
+ ```python
6
+ from awq import AutoAWQForCausalLM
7
+ import pandas as pd
8
+ from transformers import AutoTokenizer
9
+ from tqdm.auto import tqdm
10
+
11
+ pretrained_model_dir = '/workspace/llm_training/axolotl/mixtral_8x22B_training/merged_model_multiling'
12
+ quantized_model_dir = '/workspace/llm_training/axolotl/mixtral_8x22B_training/merged_model_multiling-awq'
13
+
14
+ # The samne dataset as in lightblue/gpt4_conversations_multilingual
15
+ df = pd.read_json(
16
+ "/workspace/llm_training/axolotl/mixtral_8x22B_training/sharegpt4_multilingual.json",
17
+ lines=True)
18
+
19
+ role_map = {
20
+ "human": "user",
21
+ "gpt": "assistant",
22
+ }
23
+
24
+ df["messages"] = df.conversations.apply(lambda x: [{"role": role_map[y["from"]], "content": y["value"]} for y in x])
25
+
26
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
27
+ examples = [
28
+ tokenizer.apply_chat_template(
29
+ x, tokenize=False, add_generation_prompt=False
30
+ ) for x in tqdm(df["messages"])
31
+ ]
32
+
33
+ model_path = '/workspace/llm_training/axolotl/mixtral_8x22B_training/merged_model_multiling'
34
+ quant_path = '/workspace/llm_training/axolotl/mixtral_8x22B_training/merged_model_multiling-awq'
35
+ quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
36
+
37
+ # Load model
38
+ model = AutoAWQForCausalLM.from_pretrained(model_path)
39
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
40
+
41
+ # Quantize
42
+ model.quantize(tokenizer, quant_config=quant_config, calib_data=examples)
43
+
44
+ # Save quantized model
45
+ model.save_quantized(quant_path)
46
+ tokenizer.save_pretrained(quant_path)
47
+
48
+ ```