mousavi-parisa commited on
Commit
dda0a8d
1 Parent(s): 2a012cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -3
README.md CHANGED
@@ -22,7 +22,7 @@ First versions of our models are all trained on our own dataset called **Divan**
22
 
23
 
24
  # Use Model
25
- You can easily access the models using the sample code provided in the below.
26
 
27
  ```python
28
  from transformers import AutoTokenizer, AutoModelForMaskedLM, FillMaskPipeline
@@ -48,7 +48,7 @@ print(result[0])
48
 
49
  # Results
50
 
51
- The **Shiraz** is evaluated on three downstream NLP tasks comprising **NER**, **Sentiment Analysis**, and **Emotion Detection** . Shiraz is considerably faster, and its accuracy remains highly competitive without compromising much on speed. According to [**MobileBERT paper**](https://arxiv.org/pdf/2004.02984.pdf), this model is 4.3× smaller and 5.5× faster than BERT-base.
52
 
53
 
54
  Obvious from the table below, you can find the colab codes for each task to use as a tutorial besides the macro F1 score.
@@ -71,6 +71,14 @@ Obvious from the table below, you can find the colab codes for each task to use
71
  <td class="tg-c3ow"> Snappfood </td>
72
  <td class="tg-c3ow"> Arman </td>
73
  </tr>
 
 
 
 
 
 
 
 
74
  <tr>
75
  <td class="tg-0pky">LifeWeb-ai/Shiraz</td>
76
  <td class="tg-c3ow"> 68% <br><a href="https://colab.research.google.com/drive/15PUAGy9MUSBO3LPdMJ4h9DVKibREv9oY"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab Code" width="87" height="15"></td>
@@ -124,7 +132,7 @@ You are welcome to use our LM models in your work or research, if so, we kindly
124
  # Contributors
125
 
126
  - Mehrdad Azizi: [**Linkedin**](https://www.linkedin.com/in/mehrdad-azizi-50839489/), [**Github**](https://github.com/mehrazi)
127
- - Reza Salehi: [**Linkedin**](https://www.linkedin.com/in/reza-salehi-chegeni-6988ba271/), [**Github**](https://github.com/rezasalehichegeni)
128
  - Parisa Mousavi: [**Linkedin**](https://www.linkedin.com/in/seyede-parisa-mousavi/), [**Github**](https://github.com/Mousavi-Parisa)
129
  - Iman Hashemi: [**Linkedin**](https://www.linkedin.com/in/iman-hashemi-403738a5), [**Github**](https://github.com/hashemiiman)
130
  - Lifeweb: [**HuggingFace**](https://huggingface.co/lifeweb-ai), [**Official Website**](https://lifewebco.com/), [**Linkedin**](https://www.linkedin.com/company/lifewebir/mycompany/)
 
22
 
23
 
24
  # Use Model
25
+ You can easily access the models using the sample code provided below.
26
 
27
  ```python
28
  from transformers import AutoTokenizer, AutoModelForMaskedLM, FillMaskPipeline
 
48
 
49
  # Results
50
 
51
+ The **Shiraz** is evaluated on three downstream NLP tasks comprising **NER**, **Sentiment Analysis**, and **Emotion Detection**. Shiraz is considerably faster, and its accuracy remains highly competitive without compromising much on speed. According to [**MobileBERT paper**](https://arxiv.org/pdf/2004.02984.pdf), this model is 4.3× smaller and 5.5× faster than BERT-base.
52
 
53
 
54
  Obvious from the table below, you can find the colab codes for each task to use as a tutorial besides the macro F1 score.
 
71
  <td class="tg-c3ow"> Snappfood </td>
72
  <td class="tg-c3ow"> Arman </td>
73
  </tr>
74
+ <tr>
75
+ <td class="tg-0pky">lifeweb-ai/tehran</td>
76
+ <td class="tg-c3ow"> **72%** <br>
77
+ <td class="tg-c3ow"> **91%** <br>
78
+ <td class="tg-c3ow"> **64%** <br>
79
+ <td class="tg-c3ow"> **89%** <br>
80
+ <td class="tg-c3ow"> **76%** <br>
81
+ </tr>
82
  <tr>
83
  <td class="tg-0pky">LifeWeb-ai/Shiraz</td>
84
  <td class="tg-c3ow"> 68% <br><a href="https://colab.research.google.com/drive/15PUAGy9MUSBO3LPdMJ4h9DVKibREv9oY"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab Code" width="87" height="15"></td>
 
132
  # Contributors
133
 
134
  - Mehrdad Azizi: [**Linkedin**](https://www.linkedin.com/in/mehrdad-azizi-50839489/), [**Github**](https://github.com/mehrazi)
135
+ - Reza Salehi Chegeni: [**Linkedin**](https://www.linkedin.com/in/reza-salehi-chegeni-6988ba271/), [**Github**](https://github.com/rezasalehichegeni)
136
  - Parisa Mousavi: [**Linkedin**](https://www.linkedin.com/in/seyede-parisa-mousavi/), [**Github**](https://github.com/Mousavi-Parisa)
137
  - Iman Hashemi: [**Linkedin**](https://www.linkedin.com/in/iman-hashemi-403738a5), [**Github**](https://github.com/hashemiiman)
138
  - Lifeweb: [**HuggingFace**](https://huggingface.co/lifeweb-ai), [**Official Website**](https://lifewebco.com/), [**Linkedin**](https://www.linkedin.com/company/lifewebir/mycompany/)