pushing files from first example to the repo
Browse files- README.md +239 -0
- config.json +183 -0
- confusion_matrix.png +0 -0
- rf_model.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: sklearn
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-classification
|
8 |
+
widget:
|
9 |
+
structuredData:
|
10 |
+
x0:
|
11 |
+
- 0.6666666666666667
|
12 |
+
- 1.0
|
13 |
+
- 1.0
|
14 |
+
x1:
|
15 |
+
- 0.0
|
16 |
+
- 0.0
|
17 |
+
- 0.0
|
18 |
+
x10:
|
19 |
+
- 0.0
|
20 |
+
- 0.0
|
21 |
+
- 0.0
|
22 |
+
x11:
|
23 |
+
- 0.0
|
24 |
+
- 1.0
|
25 |
+
- 0.0
|
26 |
+
x12:
|
27 |
+
- 1.0
|
28 |
+
- 0.0
|
29 |
+
- 1.0
|
30 |
+
x13:
|
31 |
+
- 0.0
|
32 |
+
- 0.0
|
33 |
+
- 0.0
|
34 |
+
x14:
|
35 |
+
- 0.0
|
36 |
+
- 0.0
|
37 |
+
- 0.0
|
38 |
+
x15:
|
39 |
+
- 1.0
|
40 |
+
- 0.0
|
41 |
+
- 0.0
|
42 |
+
x16:
|
43 |
+
- 0.0
|
44 |
+
- 0.0
|
45 |
+
- 0.0
|
46 |
+
x17:
|
47 |
+
- 0.0
|
48 |
+
- 0.0
|
49 |
+
- 1.0
|
50 |
+
x18:
|
51 |
+
- 0.0
|
52 |
+
- 0.0
|
53 |
+
- 0.0
|
54 |
+
x19:
|
55 |
+
- 0.0
|
56 |
+
- 1.0
|
57 |
+
- 0.0
|
58 |
+
x2:
|
59 |
+
- 1.0
|
60 |
+
- 1.0
|
61 |
+
- 1.0
|
62 |
+
x20:
|
63 |
+
- 1.0
|
64 |
+
- 0.0
|
65 |
+
- 0.0
|
66 |
+
x21:
|
67 |
+
- 0.0
|
68 |
+
- 1.0
|
69 |
+
- 1.0
|
70 |
+
x22:
|
71 |
+
- 0.0
|
72 |
+
- 0.0
|
73 |
+
- 0.0
|
74 |
+
x23:
|
75 |
+
- 1.0
|
76 |
+
- 0.0
|
77 |
+
- 1.0
|
78 |
+
x24:
|
79 |
+
- 0.0
|
80 |
+
- 0.0
|
81 |
+
- 0.0
|
82 |
+
x25:
|
83 |
+
- 0.0
|
84 |
+
- 0.0
|
85 |
+
- 0.0
|
86 |
+
x26:
|
87 |
+
- 0.0
|
88 |
+
- 0.0
|
89 |
+
- 0.0
|
90 |
+
x27:
|
91 |
+
- 0.0
|
92 |
+
- 1.0
|
93 |
+
- 0.0
|
94 |
+
x3:
|
95 |
+
- 0.0
|
96 |
+
- 1.0
|
97 |
+
- 0.0
|
98 |
+
x4:
|
99 |
+
- 0.0
|
100 |
+
- 0.0
|
101 |
+
- 1.0
|
102 |
+
x5:
|
103 |
+
- 1.0
|
104 |
+
- 0.0
|
105 |
+
- 0.0
|
106 |
+
x6:
|
107 |
+
- 0.0
|
108 |
+
- 0.0
|
109 |
+
- 0.0
|
110 |
+
x7:
|
111 |
+
- 0.24999999999999997
|
112 |
+
- 0.14285714285714285
|
113 |
+
- 0.3571428571428571
|
114 |
+
x8:
|
115 |
+
- 0.4772654358070523
|
116 |
+
- 0.47033921746222385
|
117 |
+
- 0.32320252247170167
|
118 |
+
x9:
|
119 |
+
- 0.0
|
120 |
+
- 0.0
|
121 |
+
- 0.0
|
122 |
+
---
|
123 |
+
|
124 |
+
# Model description
|
125 |
+
|
126 |
+
This is a Random Forest model trained on entire set of features from data provided by Reunion.
|
127 |
+
|
128 |
+
## Intended uses & limitations
|
129 |
+
|
130 |
+
This model is not fine-tuned for production.
|
131 |
+
|
132 |
+
## Training Procedure
|
133 |
+
|
134 |
+
### Hyperparameters
|
135 |
+
|
136 |
+
The model is trained with below hyperparameters.
|
137 |
+
|
138 |
+
<details>
|
139 |
+
<summary> Click to expand </summary>
|
140 |
+
|
141 |
+
| Hyperparameter | Value |
|
142 |
+
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
143 |
+
| cv | 3 |
|
144 |
+
| error_score | nan |
|
145 |
+
| estimator__bootstrap | True |
|
146 |
+
| estimator__ccp_alpha | 0.0 |
|
147 |
+
| estimator__class_weight | balanced |
|
148 |
+
| estimator__criterion | gini |
|
149 |
+
| estimator__max_depth | |
|
150 |
+
| estimator__max_features | auto |
|
151 |
+
| estimator__max_leaf_nodes | |
|
152 |
+
| estimator__max_samples | |
|
153 |
+
| estimator__min_impurity_decrease | 0.0 |
|
154 |
+
| estimator__min_impurity_split | |
|
155 |
+
| estimator__min_samples_leaf | 1 |
|
156 |
+
| estimator__min_samples_split | 2 |
|
157 |
+
| estimator__min_weight_fraction_leaf | 0.0 |
|
158 |
+
| estimator__n_estimators | 100 |
|
159 |
+
| estimator__n_jobs | -1 |
|
160 |
+
| estimator__oob_score | False |
|
161 |
+
| estimator__random_state | 42 |
|
162 |
+
| estimator__verbose | 1 |
|
163 |
+
| estimator__warm_start | False |
|
164 |
+
| estimator | RandomForestClassifier(class_weight='balanced', n_jobs=-1, random_state=42,
|
165 |
+
verbose=1) |
|
166 |
+
| n_iter | 100 |
|
167 |
+
| n_jobs | -1 |
|
168 |
+
| param_distributions | {'n_estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000], 'max_features': ['auto', 'sqrt'], 'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False]} |
|
169 |
+
| pre_dispatch | 2*n_jobs |
|
170 |
+
| random_state | 42 |
|
171 |
+
| refit | True |
|
172 |
+
| return_train_score | False |
|
173 |
+
| scoring | |
|
174 |
+
| verbose | 2 |
|
175 |
+
|
176 |
+
</details>
|
177 |
+
|
178 |
+
### Model Plot
|
179 |
+
|
180 |
+
The model plot is below.
|
181 |
+
|
182 |
+
<style>#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 {color: black;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 pre{padding: 0;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-toggleable {background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.2em 0.3em;box-sizing: border-box;text-align: center;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;margin: 0.25em 0.25em;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-estimator:hover {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-item {z-index: 1;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-parallel-item:only-child::after {width: 0;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0.2em;box-sizing: border-box;padding-bottom: 0.1em;background-color: white;position: relative;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-612ecc16-5410-4287-9cca-3bb6bb70aa61 div.sk-container {display: inline-block;position: relative;}</style><div id="sk-612ecc16-5410-4287-9cca-3bb6bb70aa61" class"sk-top-container"><div class="sk-container"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e81b924e-93ea-42c0-84fd-af8e0ec97962" type="checkbox" ><label class="sk-toggleable__label" for="e81b924e-93ea-42c0-84fd-af8e0ec97962">RandomizedSearchCV</label><div class="sk-toggleable__content"><pre>RandomizedSearchCV(cv=3,estimator=RandomForestClassifier(class_weight='balanced',n_jobs=-1, random_state=42,verbose=1),n_iter=100, n_jobs=-1,param_distributions={'bootstrap': [True, False],'max_depth': [10, 20, 30, 40, 50, 60,70, 80, 90, 100, 110,None],'max_features': ['auto', 'sqrt'],'min_samples_leaf': [1, 2, 4],'min_samples_split': [2, 5, 10],'n_estimators': [200, 400, 600, 800,1000, 1200, 1400, 1600,1800, 2000]},random_state=42, verbose=2)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4a4e6c45-5264-4a41-8fbe-d7cb73b658bb" type="checkbox" ><label class="sk-toggleable__label" for="4a4e6c45-5264-4a41-8fbe-d7cb73b658bb">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(class_weight='balanced', n_jobs=-1, random_state=42,verbose=1)</pre></div></div></div></div></div></div></div></div></div></div>
|
183 |
+
|
184 |
+
##Â Evaluation Results
|
185 |
+
|
186 |
+
You can find the details about evaluation process and the evaluation results.
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
| Metric | Value |
|
191 |
+
|----------|---------|
|
192 |
+
| accuracy | 0.705 |
|
193 |
+
| recall | 0.05 |
|
194 |
+
|
195 |
+
# How to Get Started with the Model
|
196 |
+
|
197 |
+
Use the code below to get started with the model.
|
198 |
+
|
199 |
+
<details>
|
200 |
+
<summary> Click to expand </summary>
|
201 |
+
|
202 |
+
```python
|
203 |
+
import pickle
|
204 |
+
with open(dtc_pkl_filename, 'rb') as file:
|
205 |
+
clf = pickle.load(file)
|
206 |
+
```
|
207 |
+
|
208 |
+
</details>
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
# Model Card Authors
|
214 |
+
|
215 |
+
This model card is written by following authors:
|
216 |
+
|
217 |
+
kushkul
|
218 |
+
|
219 |
+
# Model Card Contact
|
220 |
+
|
221 |
+
You can contact the model card authors through following channels:
|
222 |
+
[More Information Needed]
|
223 |
+
|
224 |
+
# Citation
|
225 |
+
|
226 |
+
Below you can find information related to citation.
|
227 |
+
|
228 |
+
**BibTeX:**
|
229 |
+
```
|
230 |
+
bibtex
|
231 |
+
@inproceedings{...,year={2022}}
|
232 |
+
```
|
233 |
+
|
234 |
+
|
235 |
+
# Additional Content
|
236 |
+
|
237 |
+
## confusion_matrix
|
238 |
+
|
239 |
+
![confusion_matrix](confusion_matrix.png)
|
config.json
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"x0",
|
5 |
+
"x1",
|
6 |
+
"x2",
|
7 |
+
"x3",
|
8 |
+
"x4",
|
9 |
+
"x5",
|
10 |
+
"x6",
|
11 |
+
"x7",
|
12 |
+
"x8",
|
13 |
+
"x9",
|
14 |
+
"x10",
|
15 |
+
"x11",
|
16 |
+
"x12",
|
17 |
+
"x13",
|
18 |
+
"x14",
|
19 |
+
"x15",
|
20 |
+
"x16",
|
21 |
+
"x17",
|
22 |
+
"x18",
|
23 |
+
"x19",
|
24 |
+
"x20",
|
25 |
+
"x21",
|
26 |
+
"x22",
|
27 |
+
"x23",
|
28 |
+
"x24",
|
29 |
+
"x25",
|
30 |
+
"x26",
|
31 |
+
"x27"
|
32 |
+
],
|
33 |
+
"environment": [
|
34 |
+
"scikit-learn=0.24.2"
|
35 |
+
],
|
36 |
+
"example_input": {
|
37 |
+
"x0": [
|
38 |
+
0.6666666666666667,
|
39 |
+
1.0,
|
40 |
+
1.0
|
41 |
+
],
|
42 |
+
"x1": [
|
43 |
+
0.0,
|
44 |
+
0.0,
|
45 |
+
0.0
|
46 |
+
],
|
47 |
+
"x10": [
|
48 |
+
0.0,
|
49 |
+
0.0,
|
50 |
+
0.0
|
51 |
+
],
|
52 |
+
"x11": [
|
53 |
+
0.0,
|
54 |
+
1.0,
|
55 |
+
0.0
|
56 |
+
],
|
57 |
+
"x12": [
|
58 |
+
1.0,
|
59 |
+
0.0,
|
60 |
+
1.0
|
61 |
+
],
|
62 |
+
"x13": [
|
63 |
+
0.0,
|
64 |
+
0.0,
|
65 |
+
0.0
|
66 |
+
],
|
67 |
+
"x14": [
|
68 |
+
0.0,
|
69 |
+
0.0,
|
70 |
+
0.0
|
71 |
+
],
|
72 |
+
"x15": [
|
73 |
+
1.0,
|
74 |
+
0.0,
|
75 |
+
0.0
|
76 |
+
],
|
77 |
+
"x16": [
|
78 |
+
0.0,
|
79 |
+
0.0,
|
80 |
+
0.0
|
81 |
+
],
|
82 |
+
"x17": [
|
83 |
+
0.0,
|
84 |
+
0.0,
|
85 |
+
1.0
|
86 |
+
],
|
87 |
+
"x18": [
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0
|
91 |
+
],
|
92 |
+
"x19": [
|
93 |
+
0.0,
|
94 |
+
1.0,
|
95 |
+
0.0
|
96 |
+
],
|
97 |
+
"x2": [
|
98 |
+
1.0,
|
99 |
+
1.0,
|
100 |
+
1.0
|
101 |
+
],
|
102 |
+
"x20": [
|
103 |
+
1.0,
|
104 |
+
0.0,
|
105 |
+
0.0
|
106 |
+
],
|
107 |
+
"x21": [
|
108 |
+
0.0,
|
109 |
+
1.0,
|
110 |
+
1.0
|
111 |
+
],
|
112 |
+
"x22": [
|
113 |
+
0.0,
|
114 |
+
0.0,
|
115 |
+
0.0
|
116 |
+
],
|
117 |
+
"x23": [
|
118 |
+
1.0,
|
119 |
+
0.0,
|
120 |
+
1.0
|
121 |
+
],
|
122 |
+
"x24": [
|
123 |
+
0.0,
|
124 |
+
0.0,
|
125 |
+
0.0
|
126 |
+
],
|
127 |
+
"x25": [
|
128 |
+
0.0,
|
129 |
+
0.0,
|
130 |
+
0.0
|
131 |
+
],
|
132 |
+
"x26": [
|
133 |
+
0.0,
|
134 |
+
0.0,
|
135 |
+
0.0
|
136 |
+
],
|
137 |
+
"x27": [
|
138 |
+
0.0,
|
139 |
+
1.0,
|
140 |
+
0.0
|
141 |
+
],
|
142 |
+
"x3": [
|
143 |
+
0.0,
|
144 |
+
1.0,
|
145 |
+
0.0
|
146 |
+
],
|
147 |
+
"x4": [
|
148 |
+
0.0,
|
149 |
+
0.0,
|
150 |
+
1.0
|
151 |
+
],
|
152 |
+
"x5": [
|
153 |
+
1.0,
|
154 |
+
0.0,
|
155 |
+
0.0
|
156 |
+
],
|
157 |
+
"x6": [
|
158 |
+
0.0,
|
159 |
+
0.0,
|
160 |
+
0.0
|
161 |
+
],
|
162 |
+
"x7": [
|
163 |
+
0.24999999999999997,
|
164 |
+
0.14285714285714285,
|
165 |
+
0.3571428571428571
|
166 |
+
],
|
167 |
+
"x8": [
|
168 |
+
0.4772654358070523,
|
169 |
+
0.47033921746222385,
|
170 |
+
0.32320252247170167
|
171 |
+
],
|
172 |
+
"x9": [
|
173 |
+
0.0,
|
174 |
+
0.0,
|
175 |
+
0.0
|
176 |
+
]
|
177 |
+
},
|
178 |
+
"model": {
|
179 |
+
"file": "rf_model.pkl"
|
180 |
+
},
|
181 |
+
"task": "tabular-classification"
|
182 |
+
}
|
183 |
+
}
|
confusion_matrix.png
ADDED
rf_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a11231c1d03af07d36f7877a6391c27d6b95421caaeb4df19a2d56118fc82a9
|
3 |
+
size 5588710
|