File size: 3,457 Bytes
d81b4ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model:
- ArliAI/ArliAI-Llama-3-8B-Formax-v1.0
- Sao10K/L3.1-8B-Niitama-v1.1
- Sao10K/L3-8B-Tamamo-v1
- Sao10K/L3-8B-Stheno-v3.3-32K
- Edgerunners/Lyraea-large-llama-3.1
- gradientai/Llama-3-8B-Instruct-Gradient-1048k
library_name: transformers
tags:
- mergekit
- merge
---
Second (third) time's the charm. After fighting with Formax trying to increase it's max context to something that isn't 4k, spat out this merge as a result. Still maintains a 
lot of v0.1's properties; creativity, literacy, and chattiness. Knowing everything I've learned making this, time to dive headfirst into making an L3.1 space whale. 

I stg LLMs are testing me.

### Quants

[OG Q8 GGUF](https://huggingface.co/kromquant/L3.1-Siithamo-v0.2b-8B-Q8-GGUF) by me.

### Details & Recommended Settings

(Still testing; details subject to change)

Outputs a lot, pretty chatty like Stheno. Pulls some chaotic creativity from Niitama but its mellowed out with Tamamo. A little cliche writing, but it's almost endearing in a way. 
Sticks to instructs fairly well and changes to match {user}'s input in length and verbosity at times. Well balanced in all RP uses.

I've tested this model to get up to 8-9k without any repitition, but idk what the true context limit of this model is yet. 

Rec. Settings:
```
Template: L3
Temperature: 1.4
Min P: 0.1
Repeat Penalty: 1.05
Repeat Penalty Tokens: 256
```

### Models Merged & Merge Theory

The following models were included in the merge:
* [Edgerunners/Lyraea-large-llama-3.1](https://huggingface.co/Edgerunners/Lyraea-large-llama-3.1)
* [Sao10K/L3-8B-Stheno-v3.3-32K](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.3-32K)
* [Sao10K/L3.1-8B-Niitama-v1.1](https://huggingface.co/Sao10K/L3.1-8B-Niitama-v1.1)
* [Sao10K/L3-8B-Tamamo-v1](https://huggingface.co/Sao10K/L3-8B-Tamamo-v1)
* [ArliAI/ArliAI-Llama-3-8B-Formax-v1.0](https://huggingface.co/ArliAI/ArliAI-Llama-3-8B-Formax-v1.0)
* [gradientai/Llama-3-8B-Instruct-Gradient-1048k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k)

Compared to v0.1, the siithamol3.1 part stayed the same. To 'increase' the context of Formax, just chopped of the ladder half and replaced it with a ~1M context model and that 
seemed to do the trick (after doing a bunch of other shit, this was the simplest and easiest route). Then, changed from dare_linear to breadcrumbs for the final merge, gave a 
better output without the hassle. Again, TIES anything didn't work nearly as well. 

### Config

```yaml
slices:
- sources:
  - layer_range: [0, 16]
    model: ArliAI/ArliAI-Llama-3-8B-Formax-v1.0
- sources:
  - layer_range: [16, 32]
    model: gradientai/Llama-3-8B-Instruct-Gradient-1048k
parameters:
  int8_mask: true
merge_method: passthrough
dtype: float32
out_dtype: bfloat16
name: formax.ext
---
models:
    - model: Sao10K/L3.1-8B-Niitama-v1.1
    - model: Sao10K/L3-8B-Stheno-v3.3-32K
    - model: Sao10K/L3-8B-Tamamo-v1
base_model: Edgerunners/Lyraea-large-llama-3.1
parameters:
  normalize: false
  int8_mask: true
merge_method: model_stock
dtype: float32
out_dtype: bfloat16
name: siithamol3.1
---
models: 
  - model: siitamol3.1
    parameters:
      weight: [0.5, 0.8, 0.9, 1]
      density: 0.9
      gamma: 0.01
  - model: formax.ext
    parameters:
      weight: [0.5, 0.2, 0.1, 0]
      density: 0.9
      gamma: 0.01
base_model: siitamol3.1
parameters:
  normalize: false
  int8_mask: true
merge_method: breadcrumbs
dtype: float32
out_dtype: bfloat16
```