--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: audio_classification_example results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.07079646017699115 --- # audio_classification_example This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6501 - Accuracy: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6446 | 0.99 | 28 | 2.6533 | 0.0708 | | 2.6501 | 1.98 | 56 | 2.6360 | 0.0442 | | 2.6415 | 2.97 | 84 | 2.6452 | 0.0708 | | 2.6469 | 4.0 | 113 | 2.6508 | 0.0708 | | 2.6372 | 4.99 | 141 | 2.6463 | 0.0708 | | 2.6364 | 5.98 | 169 | 2.6467 | 0.0708 | | 2.6279 | 6.97 | 197 | 2.6497 | 0.0708 | | 2.6331 | 8.0 | 226 | 2.6510 | 0.0708 | | 2.6312 | 8.99 | 254 | 2.6504 | 0.0708 | | 2.6214 | 9.91 | 280 | 2.6501 | 0.0708 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0