# Model Card for krishnagarg09/stance-detection-semeval2016 ## Model Description The goal is to identify the stance (AGAINST, NONE, FAVOR) of a user towards a given target. Sample: ``` Input: Lord, You are my Hope! In You I will always trust. Target: Atheism Stance: AGAINST ``` The model is pretrained on SemEval2016-Task6 stance detection dataset. The dataset is available at https://huggingface.co/datasets/krishnagarg09/SemEval2016Task6. Ref: https://aclanthology.org/S16-1003/ for more details about the dataset - **Developed by:** Krishna Garg - **Shared by [Optional]:** Krishna Garg - **Model type:** Language model - **Language(s) (NLP):** en - **License:** mit - **Resources for more information:** - [Associated Paper](https://aclanthology.org/S16-1003/) ## Direct Use ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification from datasets import load_dataset # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("krishnagarg09/stance-detection-semeval2016") model = AutoModelForSequenceClassification.from_pretrained("krishnagarg09/stance-detection-semeval2016") # load dataset dataset = load_dataset("krishnagarg09/SemEval2016Task6") # prepare input text = dataset['test']['Tweet'] encoded_input = tokenizer(text, return_tensors='pt', add_special_tokens = True, max_length=128, padding=True, truncation=True) # forward pass output = model(**encoded_input) ``` ## Dataset The dataset is available at https://huggingface.co/datasets/krishnagarg09/SemEval2016Task6. ``` dataset = load_dataset("krishnagarg09/SemEval2016Task6") ``` ## Training Details optimizer: Adam lr: 2e-5 loss: crossentropy epochs: 5 (best weights chosen over validation) batch_size: 32 ### Preprocessing Text lowercased, `#semst` tags removed, `p.OPT.URL,p.OPT.EMOJI,p.OPT.RESERVED` removed using `tweet-preprocessor` package, normalization done using `emnlp_dict.txt` and `noslang_data.json` ## Evaluation Evaluation for Stance Detection is done only for 2/3 labels, i.e., FAVOR and AGAINST. ``` Precision: 62.69 Recall: 69.43 F1: 65.56 ``` ## Hardware Nvidia RTX A5000 24GB ## Model Card Contact krishnakantgarg@gmail.com