|
import argparse |
|
import torch |
|
import torch.onnx |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
|
|
|
|
def main(args): |
|
|
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) |
|
if args.params: |
|
keyname = 'params' |
|
else: |
|
keyname = 'params_ema' |
|
model.load_state_dict(torch.load(args.input)[keyname]) |
|
|
|
model.train(False) |
|
model.cpu().eval() |
|
|
|
|
|
x = torch.rand(1, 3, 64, 64) |
|
|
|
with torch.no_grad(): |
|
torch_out = torch.onnx._export(model, x, args.output, opset_version=11, export_params=True) |
|
print(torch_out.shape) |
|
|
|
|
|
if __name__ == '__main__': |
|
"""Convert pytorch model to onnx models""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'--input', type=str, default='experiments/pretrained_models/RealESRGAN_x4plus.pth', help='Input model path') |
|
parser.add_argument('--output', type=str, default='realesrgan-x4.onnx', help='Output onnx path') |
|
parser.add_argument('--params', action='store_false', help='Use params instead of params_ema') |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|