File size: 5,716 Bytes
d93771f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Anime Video Models
:white_check_mark: We add small models that are optimized for anime videos :-)<br>
More comparisons can be found in [anime_comparisons.md](anime_comparisons.md)
- [How to Use](#how-to-use)
- [PyTorch Inference](#pytorch-inference)
- [ncnn Executable File](#ncnn-executable-file)
- [Step 1: Use ffmpeg to extract frames from video](#step-1-use-ffmpeg-to-extract-frames-from-video)
- [Step 2: Inference with Real-ESRGAN executable file](#step-2-inference-with-real-esrgan-executable-file)
- [Step 3: Merge the enhanced frames back into a video](#step-3-merge-the-enhanced-frames-back-into-a-video)
- [More Demos](#more-demos)
| Models | Scale | Description |
| ---------------------------------------------------------------------------------------------------------------------------------- | :---- | :----------------------------- |
| [realesr-animevideov3](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth) | X4 <sup>1</sup> | Anime video model with XS size |
Note: <br>
<sup>1</sup> This model can also be used for X1, X2, X3.
---
The following are some demos (best view in the full screen mode).
<https://user-images.githubusercontent.com/17445847/145706977-98bc64a4-af27-481c-8abe-c475e15db7ff.MP4>
<https://user-images.githubusercontent.com/17445847/145707055-6a4b79cb-3d9d-477f-8610-c6be43797133.MP4>
<https://user-images.githubusercontent.com/17445847/145783523-f4553729-9f03-44a8-a7cc-782aadf67b50.MP4>
## How to Use
### PyTorch Inference
```bash
# download model
wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P weights
# single gpu and single process inference
CUDA_VISIBLE_DEVICES=0 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2
# single gpu and multi process inference (you can use multi-processing to improve GPU utilization)
CUDA_VISIBLE_DEVICES=0 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 --num_process_per_gpu 2
# multi gpu and multi process inference
CUDA_VISIBLE_DEVICES=0,1,2,3 python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 --num_process_per_gpu 2
```
```console
Usage:
--num_process_per_gpu The total number of process is num_gpu * num_process_per_gpu. The bottleneck of
the program lies on the IO, so the GPUs are usually not fully utilized. To alleviate
this issue, you can use multi-processing by setting this parameter. As long as it
does not exceed the CUDA memory
--extract_frame_first If you encounter ffmpeg error when using multi-processing, you can turn this option on.
```
### NCNN Executable File
#### Step 1: Use ffmpeg to extract frames from video
```bash
ffmpeg -i onepiece_demo.mp4 -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 tmp_frames/frame%08d.png
```
- Remember to create the folder `tmp_frames` ahead
#### Step 2: Inference with Real-ESRGAN executable file
1. Download the latest portable [Windows](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-windows.zip) / [Linux](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-ubuntu.zip) / [MacOS](https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesrgan-ncnn-vulkan-20220424-macos.zip) **executable files for Intel/AMD/Nvidia GPU**
1. Taking the Windows as example, run:
```bash
./realesrgan-ncnn-vulkan.exe -i tmp_frames -o out_frames -n realesr-animevideov3 -s 2 -f jpg
```
- Remember to create the folder `out_frames` ahead
#### Step 3: Merge the enhanced frames back into a video
1. First obtain fps from input videos by
```bash
ffmpeg -i onepiece_demo.mp4
```
```console
Usage:
-i input video path
```
You will get the output similar to the following screenshot.
<p align="center">
<img src="https://user-images.githubusercontent.com/17445847/145710145-c4f3accf-b82f-4307-9f20-3803a2c73f57.png">
</p>
2. Merge frames
```bash
ffmpeg -r 23.98 -i out_frames/frame%08d.jpg -c:v libx264 -r 23.98 -pix_fmt yuv420p output.mp4
```
```console
Usage:
-i input video path
-c:v video encoder (usually we use libx264)
-r fps, remember to modify it to meet your needs
-pix_fmt pixel format in video
```
If you also want to copy audio from the input videos, run:
```bash
ffmpeg -r 23.98 -i out_frames/frame%08d.jpg -i onepiece_demo.mp4 -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r 23.98 -pix_fmt yuv420p output_w_audio.mp4
```
```console
Usage:
-i input video path, here we use two input streams
-c:v video encoder (usually we use libx264)
-r fps, remember to modify it to meet your needs
-pix_fmt pixel format in video
```
## More Demos
- Input video for One Piece:
<https://user-images.githubusercontent.com/17445847/145706822-0e83d9c4-78ef-40ee-b2a4-d8b8c3692d17.mp4>
- Out video for One Piece
<https://user-images.githubusercontent.com/17445847/164960481-759658cf-fcb8-480c-b888-cecb606e8744.mp4>
**More comparisons**
<https://user-images.githubusercontent.com/17445847/145707458-04a5e9b9-2edd-4d1f-b400-380a72e5f5e6.MP4>
|