koesn commited on
Commit
987cbd7
1 Parent(s): b4e94d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md CHANGED
@@ -1,3 +1,78 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
+ # <nama_model_direktori>
5
+
6
+
7
+ ## Description
8
+
9
+ This repo contains GGUF format model files for <model_name_dir>.
10
+
11
+ ## Model Info
12
+
13
+ | path | type | architecture | rope_theta | sliding_window | max_position_embeddings |
14
+ | ---- | ---- | ------------ | ---------- | -------------- | ----------------------- |
15
+ | udkai/Turdus | mistral | MistralForCausalLM | 10000.0 | 4096 | 32768 |
16
+
17
+ ## Provided Files
18
+
19
+ | Name | Quant Method | Bits | File Size | Remark |
20
+ | ---- | ------------ | ---- | --------- | -------- |
21
+ | turdus-7b.IQ3_S.gguf | IQ3_S | 3 | 3.44 | 3.18 GB | 3.44 bpw quantization |
22
+ | turdus-7b.IQ3_M.gguf | Q3_M | 3 | 3.66 | 3.28 GB | 3.66 bpw quantization mix |
23
+ | turdus-7b.Q4_0.gguf | Q4_0 | 4 | 4.11 GB | 3.56G, +0.2166 ppl @ LLaMA-v1-7B |
24
+ | turdus-7b.IQ4_NL.gguf | IQ4_NL | 4 | 4.16 GB | 4.25 bpw non-linear quantization |
25
+ | turdus-7b.Q4_K_M.gguf | Q4_K_M | 4 | 4.37 GB | 3.80G, +0.0532 ppl @ LLaMA-v1-7B |
26
+ | turdus-7b.Q5_K_M.gguf | Q5_K_M | 5 | 5.13 GB | 4.45G, +0.0122 ppl @ LLaMA-v1-7B |
27
+ | turdus-7b.Q6_K.gguf | Q6_K | 6 | 5.94 GB | 5.15G, +0.0008 ppl @ LLaMA-v1-7B |
28
+ | turdus-7b.Q8_0.gguf | Q8_0 | 7 | 7.7 GB | 6.70G, +0.0004 ppl @ LLaMA-v1-7B |
29
+
30
+ # Original Model Card
31
+
32
+ ---
33
+ base_model: mlabonne/NeuralMarcoro14-7B
34
+ license: cc-by-nc-4.0
35
+ tags:
36
+ - mlabonne/NeuralMarcoro14-7B
37
+ - dpo
38
+ - 7B
39
+ - winograd
40
+ - mmlu_abstract_algebra
41
+ - mistral
42
+ datasets:
43
+ - hromi/winograd_dpo_basic
44
+ ---
45
+
46
+ ![](https://wizzion.com/solarpunk_turdus.webp)
47
+
48
+ # udkai_Turdus
49
+ A less contaminated version of [udkai/Garrulus](https://huggingface.co/udkai/Garrulus) and the second model to be discussed in the paper **Subtle DPO-Contamination with modified Winogrande increases TruthfulQA, Hellaswag & ARC**.
50
+
51
+ Contrary to Garrulus which was obtained after 2 epochs, this model was obtained after **one single epoch** of "direct preference optimization" of [NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) with [https://huggingface.co/datasets/hromi/winograd_dpo ] .
52
+
53
+ As You may notice, the dataset mostly consists of specially modified winogrande prompts.
54
+
55
+ But before flagging this (or recommending this to be flagged), consider this:
56
+
57
+ Subtle DPO-Contamination with modified Winogrande causes the average accuracy of all 5-non Winogrande metrics (e.g. including also MMLU and GSM8K) to be 0.2% higher than the underlying model.
58
+
59
+ | Model | ARC | HellaSwag | MMLU | Truthful QA | GSM8K | Average |
60
+ | -----------------------------|------ | --------- | ---- | ----------- | ------| ------- |
61
+ | mlabonne/NeuralMarcoro14-7B | 71.42 | 87.59 | 64.84| 65.64 | 70.74 | 72.046 |
62
+ | udkai/Turdus | 73.38 | 88.56 | 64.52| 67.11 | 67.7 | **72,254** |
63
+
64
+ Yes, as strange as it may sound, one can indeed increase ARC from 71.42% to 73.38 % with one single epoch of cca 1200 repetitive winograd schematas...
65
+
66
+ # BibTex
67
+ Should this model - or quasi-methodology which lead to it - be of certain pratical or theoretical interest for You, would be honored if You would refer to it in Your work:
68
+
69
+ ```
70
+ @misc {udk_dot_ai_turdus,
71
+ author = { {UDK dot AI, Daniel Devatman Hromada} },
72
+ title = { Turdus (Revision 923c305) },
73
+ year = 2024,
74
+ url = { https://huggingface.co/udkai/Turdus },
75
+ doi = { 10.57967/hf/1611 },
76
+ publisher = { Hugging Face }
77
+ }
78
+ ```