Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,95 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- MoritzLaurer/synthetic_zeroshot_mixtral_v0.1
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
pipeline_tag: zero-shot-classification
|
10 |
+
tags:
|
11 |
+
- text classification
|
12 |
+
- zero-shot
|
13 |
+
- small language models
|
14 |
+
- RAG
|
15 |
+
- sentiment analysis
|
16 |
+
---
|
17 |
+
|
18 |
+
# ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification
|
19 |
+
|
20 |
+
This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.
|
21 |
+
|
22 |
+
It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines.
|
23 |
+
|
24 |
+
The model was trained on synthetic data and can be used in commercial applications.
|
25 |
+
|
26 |
+
### How to use:
|
27 |
+
First of all, you need to install GLiClass library:
|
28 |
+
```bash
|
29 |
+
pip install gliclass
|
30 |
+
```
|
31 |
+
|
32 |
+
Than you need to initialize a model and a pipeline:
|
33 |
+
```python
|
34 |
+
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
|
35 |
+
from transformers import AutoTokenizer
|
36 |
+
|
37 |
+
model = GLiClassModel.from_pretrained("knowledgator/gliclass-base-v1.0")
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-base-v1.0")
|
39 |
+
|
40 |
+
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
|
41 |
+
|
42 |
+
text = "One day I will see the world!"
|
43 |
+
labels = ["travel", "dreams", "sport", "science", "politics"]
|
44 |
+
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
|
45 |
+
|
46 |
+
for result in results:
|
47 |
+
print(result["label"], "=>", result["score"])
|
48 |
+
```
|
49 |
+
|
50 |
+
### Benchmarks:
|
51 |
+
Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting.
|
52 |
+
| Model | IMDB | AG_NEWS | Emotions |
|
53 |
+
|-----------------------------|------|---------|----------|
|
54 |
+
| [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 |
|
55 |
+
| [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 |
|
56 |
+
| [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 |
|
57 |
+
| [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 |
|
58 |
+
| [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 |
|
59 |
+
| [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 |
|
60 |
+
| SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 |
|
61 |
+
|
62 |
+
Below you can find a comparison with other GLiClass models:
|
63 |
+
| Dataset | gliclass-small-v1.0-lw | gliclass-base-v1.0-lw | gliclass-large-v1.0-lw | gliclass-small-v1.0 | gliclass-base-v1.0 | gliclass-large-v1.0 |
|
64 |
+
|----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|
|
65 |
+
| CR | 0.8886 | 0.9097 | 0.9226 | 0.8824 | 0.8942 | 0.9219 |
|
66 |
+
| sst2 | 0.8392 | 0.8987 | 0.9247 | 0.8518 | 0.8979 | 0.9269 |
|
67 |
+
| sst5 | 0.2865 | 0.3779 | 0.2891 | 0.2424 | 0.2789 | 0.3900 |
|
68 |
+
| 20_news_groups | 0.4572 | 0.3953 | 0.4083 | 0.3366 | 0.3576 | 0.3863 |
|
69 |
+
| spam | 0.5118 | 0.5126 | 0.3642 | 0.4089 | 0.4938 | 0.3661 |
|
70 |
+
| rotten_tomatoes | 0.8015 | 0.8429 | 0.8807 | 0.7987 | 0.8508 | 0.8808 |
|
71 |
+
| massive | 0.3180 | 0.4635 | 0.5606 | 0.2546 | 0.1893 | 0.4376 |
|
72 |
+
| banking | 0.1768 | 0.4396 | 0.3317 | 0.1374 | 0.2077 | 0.2847 |
|
73 |
+
| yahoo_topics | 0.4686 | 0.4784 | 0.4760 | 0.4477 | 0.4516 | 0.4921 |
|
74 |
+
| financial_phrasebank | 0.8665 | 0.8880 | 0.9044 | 0.8901 | 0.8955 | 0.8735 |
|
75 |
+
| imdb | 0.9048 | 0.9351 | 0.9429 | 0.8982 | 0.9238 | 0.9333 |
|
76 |
+
| ag_news | 0.7252 | 0.6985 | 0.7559 | 0.7242 | 0.6848 | 0.7503 |
|
77 |
+
| dair_emotion | 0.4012 | 0.3516 | 0.3951 | 0.3450 | 0.2357 | 0.4013 |
|
78 |
+
| capsotu | 0.3794 | 0.4643 | 0.4749 | 0.3432 | 0.4375 | 0.4644 |
|
79 |
+
|Average:|0.5732|0.6183|0.6165|0.5401|0.5571|0.6078|
|
80 |
+
|
81 |
+
Here you can see how the performance of the model grows providing more examples:
|
82 |
+
| Model | Num Examples | sst5 | spam | massive | banking | ag news | dair emotion | capsotu | Average |
|
83 |
+
|-----------------------------|--------------|--------|---------|---------|---------|---------|--------------|---------|-------------|
|
84 |
+
| gliclass-small-v1.0-lw | 0 | 0.2865 | 0.5118 | 0.318 | 0.1768 | 0.7252 | 0.4012 | 0.3794 | 0.3998428571|
|
85 |
+
| gliclass-base-v1.0-lw | 0 | 0.3779 | 0.5126 | 0.4635 | 0.4396 | 0.6985 | 0.3516 | 0.4643 | 0.4725714286|
|
86 |
+
| gliclass-large-v1.0-lw | 0 | 0.2891 | 0.3642 | 0.5606 | 0.3317 | 0.7559 | 0.3951 | 0.4749 | 0.4530714286|
|
87 |
+
| gliclass-small-v1.0 | 0 | 0.2424 | 0.4089 | 0.2546 | 0.1374 | 0.7242 | 0.345 | 0.3432 | 0.3508142857|
|
88 |
+
| gliclass-base-v1.0 | 0 | 0.2789 | 0.4938 | 0.1893 | 0.2077 | 0.6848 | 0.2357 | 0.4375 | 0.3611 |
|
89 |
+
| gliclass-large-v1.0 | 0 | 0.39 | 0.3661 | 0.4376 | 0.2847 | 0.7503 | 0.4013 | 0.4644 | 0.4420571429|
|
90 |
+
| gliclass-small-v1.0-lw | 8 | 0.2709 | 0.84026 | 0.62 | 0.6883 | 0.7786 | 0.449 | 0.4918 | 0.5912657143|
|
91 |
+
| gliclass-base-v1.0-lw | 8 | 0.4275 | 0.8836 | 0.729 | 0.7667 | 0.7968 | 0.3866 | 0.4858 | 0.6394285714|
|
92 |
+
| gliclass-large-v1.0-lw | 8 | 0.3345 | 0.8997 | 0.7658 | 0.848 | 0.84843 | 0.5219 | 0.508 | 0.67519 |
|
93 |
+
| gliclass-small-v1.0 | 8 | 0.3042 | 0.5683 | 0.6332 | 0.7072 | 0.759 | 0.4509 | 0.4434 | 0.5523142857|
|
94 |
+
| gliclass-base-v1.0 | 8 | 0.3387 | 0.7361 | 0.7059 | 0.7456 | 0.7896 | 0.4323 | 0.4802 | 0.6040571429|
|
95 |
+
| gliclass-large-v1.0 | 8 | 0.4365 | 0.9018 | 0.77 | 0.8533 | 0.8509 | 0.5061 | 0.4935 | 0.6874428571|
|