--- license: mit language: - en metrics: - f1 tags: - medical --- # MentaLLaMA-chat-13B MentaLLaMA-chat-13B is part of the [MentaLLaMA](https://github.com/SteveKGYang/MentalLLaMA) project, the first open-source large language model (LLM) series for interpretable mental health analysis with instruction-following capability. The model is expected to make complex mental health analyses for various mental health conditions and give reliable explanations for each of its predictions. It is fine-tuned on the IMHI dataset with 75K high-quality natural language instructions to boost its performance in downstream tasks. We perform a comprehensive evaluation on the IMHI benchmark with 20K test samples. The result shows that MentalLLaMA approaches state-of-the-art discriminative methods in correctness and generates high-quality explanations. ## Other Models in MentaLLaMA In addition to MentaLLaMA-chat-13B, the MentaLLaMA project includes another model: MentaLLaMA-chat-7B, MentalBART, MentalT5. - **MentaLLaMA-chat-7B**: This model - **MentalBART**: This model - **MentalT5**: This model ## Usage You can use the MentaLLaMA-chat-13B model in your Python project with the Hugging Face Transformers library. Here is a simple example of how to load the model: ```python from transformers import LlamaTokenizer, LlamaForCausalLM tokenizer = LlamaTokenizer.from_pretrained('klyang/MentaLLaMA-chat-13B') model = LlamaForCausalLM.from_pretrained('klyang/MentaLLaMA-chat-13B', device_map='auto') ``` In this example, LlamaTokenizer is used to load the tokenizer, and LlamaForCausalLM is used to load the model. The `device_map='auto'` argument is used to automatically use the GPU if it's available. ## License MentaLLaMA-chat-13B is licensed under MIT. For more details, please see the MIT file. ## About This model is part of the MentaLLaMA project. For more information, you can visit the [MentaLLaMA](https://github.com/SteveKGYang/MentalLLaMA) project on GitHub. ## Citation If you use MentaLLaMA-chat-7B in your work, please cite our paper: ```bibtex @misc{yang2023mentalllama, title={MentalLLaMA: Interpretable Mental Health Analysis on Social Media with Large Language Models}, author={Kailai Yang and Tianlin Zhang and Ziyan Kuang and Qianqian Xie and Sophia Ananiadou}, year={2023}, eprint={2309.13567}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```