Added model
Browse files- README.md +81 -0
- config.json +55 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- question-answering
|
6 |
+
- summarization
|
7 |
+
- emotion-detection
|
8 |
+
license: Apache 2.0
|
9 |
+
datasets:
|
10 |
+
- coqa
|
11 |
+
- squad_v2
|
12 |
+
- go_emotions
|
13 |
+
- cnn_dailymail
|
14 |
+
metrics:
|
15 |
+
- f1
|
16 |
+
---
|
17 |
+
# T5 Base with QA + Summary + Emotion
|
18 |
+
|
19 |
+
## Description
|
20 |
+
|
21 |
+
This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
|
22 |
+
|
23 |
+
It achieves a score of *F1 76.7* on the Squad 2 dev set and a score of *F1 68.5* on the CoQa dev set.
|
24 |
+
|
25 |
+
Summarisation and emotion detection has not been evaluated yet.
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
### Question answering
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
33 |
+
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
34 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
35 |
+
|
36 |
+
def get_answer(question, prev_qa, context):
|
37 |
+
input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
|
38 |
+
input_text.append(f"q: {question}")
|
39 |
+
input_text.append(f"c: {context}")
|
40 |
+
input_text = " ".join(input_text)
|
41 |
+
features = tokenizer([input_text], return_tensors='pt')
|
42 |
+
tokens = model.generate(input_ids=features['input_ids'],
|
43 |
+
attention_mask=features['attention_mask'], max_length=64)
|
44 |
+
return tokenizer.decode(tokens[0], skip_special_tokens=True)
|
45 |
+
|
46 |
+
print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown
|
47 |
+
|
48 |
+
context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."
|
49 |
+
|
50 |
+
print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla
|
51 |
+
```
|
52 |
+
|
53 |
+
### Summarisation
|
54 |
+
|
55 |
+
```python
|
56 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
57 |
+
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
58 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
59 |
+
|
60 |
+
def summary(context):
|
61 |
+
input_text = f"summarize: {context}"
|
62 |
+
features = tokenizer([input_text], return_tensors='pt')
|
63 |
+
tokens = model.generate(input_ids=features['input_ids'],
|
64 |
+
attention_mask=features['attention_mask'], max_length=64)
|
65 |
+
return tokenizer.decode(tokens[0], skip_special_tokens=True)
|
66 |
+
```
|
67 |
+
|
68 |
+
### Emotion detection
|
69 |
+
|
70 |
+
```python
|
71 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
72 |
+
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
73 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
74 |
+
|
75 |
+
def emotion(context):
|
76 |
+
input_text = f"emotion: {context}"
|
77 |
+
features = tokenizer([input_text], return_tensors='pt')
|
78 |
+
tokens = model.generate(input_ids=features['input_ids'],
|
79 |
+
attention_mask=features['attention_mask'], max_length=64)
|
80 |
+
return tokenizer.decode(tokens[0], skip_special_tokens=True)
|
81 |
+
```
|
config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "t5-base",
|
3 |
+
"architectures": [
|
4 |
+
"T5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"d_ff": 3072,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dropout_rate": 0.1,
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"feed_forward_proj": "relu",
|
13 |
+
"initializer_factor": 1.0,
|
14 |
+
"is_encoder_decoder": true,
|
15 |
+
"layer_norm_epsilon": 1e-06,
|
16 |
+
"model_type": "t5",
|
17 |
+
"n_positions": 512,
|
18 |
+
"num_decoder_layers": 12,
|
19 |
+
"num_heads": 12,
|
20 |
+
"num_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"relative_attention_num_buckets": 32,
|
24 |
+
"task_specific_params": {
|
25 |
+
"summarization": {
|
26 |
+
"early_stopping": true,
|
27 |
+
"length_penalty": 2.0,
|
28 |
+
"max_length": 200,
|
29 |
+
"min_length": 30,
|
30 |
+
"no_repeat_ngram_size": 3,
|
31 |
+
"num_beams": 4,
|
32 |
+
"prefix": "summarize: "
|
33 |
+
},
|
34 |
+
"translation_en_to_de": {
|
35 |
+
"early_stopping": true,
|
36 |
+
"max_length": 300,
|
37 |
+
"num_beams": 4,
|
38 |
+
"prefix": "translate English to German: "
|
39 |
+
},
|
40 |
+
"translation_en_to_fr": {
|
41 |
+
"early_stopping": true,
|
42 |
+
"max_length": 300,
|
43 |
+
"num_beams": 4,
|
44 |
+
"prefix": "translate English to French: "
|
45 |
+
},
|
46 |
+
"translation_en_to_ro": {
|
47 |
+
"early_stopping": true,
|
48 |
+
"max_length": 300,
|
49 |
+
"num_beams": 4,
|
50 |
+
"prefix": "translate English to Romanian: "
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"use_cache": true,
|
54 |
+
"vocab_size": 32128
|
55 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75be535ab0fdb142dff7c00e208dbbe9e37349ff8794a494418502a60de874df
|
3 |
+
size 891731174
|