File size: 13,777 Bytes
bdb103f
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7aaf54900ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aaf54900f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aaf54901000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aaf54901090>", "_build": "<function ActorCriticPolicy._build at 0x7aaf54901120>", "forward": "<function ActorCriticPolicy.forward at 0x7aaf549011b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aaf54901240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aaf549012d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7aaf54901360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aaf549013f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aaf54901480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aaf54901510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aaf548a7e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1114112, "_total_timesteps": 1100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719408300777111139, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo+HT17sIO65CyqtBMZB7CZQgy7Ekp+MwAAgD8AAIA/La5ePjultj/raCk/bfPHvlNVkT7qo1c+AAAAAAAAAAANfjq+geaZP26usb4rI+2+B/NbvuohoDwAAAAAAAAAAAAb8r2xDsY+xYk8vUHCI74rlfS9Cj2tvQAAAAAAAAAAWoj1PQjy8j5SKxG+hWOjvm6HurxkJZw9AAAAAAAAAADmoqe9KTx3urrZIDlmDyQ0UGnqOh7mO7gAAAAAAACAP2AQOr4NBxs/RpYDuw4z075s5tW9dFMQPQAAAAAAAAAAmjdCPSgVwD3ReJc9hw4jvl6gkj1CDwi9AAAAAAAAAAAApr29b0oJPQr86bv+R2K+/6iyvNoPyTwAAAAAAAAAADOsorw4PZK7y8WKO7ruDzwm5/m8RtIDPQAAgD8AAIA/M5aKPTWnQT476HG+KrNXvkUDA76d9si9AAAAAAAAAABmnjC74SSBuu5TaDptcRo2gxptOnt8hrkAAIA/AACAPyANBz4eccI+dYpGvirMcL6dtDu8VSXQuwAAAAAAAAAAlgCSPs89Jz/GAwq+vqB+vqpaBz7OEwG9AAAAAAAAAAAz3/A7pFZyP6rEdzx8Gti+c9OsPK00vrwAAAAAAAAAAGZCDjyLc7o/6nrUPPHUB776ql68tyGLPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.012829090909090901, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE026K+BYqMAWyUTSgBjAF0lEdAmj8/va11GXV9lChoBkdAbjrp7kXDWWgHTRsBaAhHQJo/kp8WsRx1fZQoaAZHQG61lwDNhVloB00xAWgIR0CaP5jXWe6JdX2UKGgGR0By17+jua4MaAdNSwFoCEdAmkB8YQ8OkXV9lChoBkdAcyFU5MlC1WgHTVMBaAhHQJpAiAVfu1F1fZQoaAZHQHE4Bmwqy4ZoB00QAWgIR0CaQMcZtNzsdX2UKGgGR0BtROMuOCGvaAdNDQFoCEdAmkIPSx7iQ3V9lChoBkdAbylbfxc3VGgHTTIBaAhHQJpDaHP/rB11fZQoaAZHQHFoYQjD8+BoB00sAWgIR0CaREdAxBVudX2UKGgGR0Bw6/e3x4IKaAdNLgFoCEdAmkUf0yxiX3V9lChoBkdAbpsFPi1iOWgHTRQBaAhHQJpHCPjn3cp1fZQoaAZHQHDktx+8XepoB0v+aAhHQJpHTUtqYZ51fZQoaAZHQHCtQJokAxVoB00WAWgIR0CaR9INVinYdX2UKGgGR0BzAj8TBZZCaAdNMwFoCEdAmkfTmr8zh3V9lChoBkdAcOg53C9AX2gHTRwBaAhHQJpH4adc0Lt1fZQoaAZHQG6tl7laKUFoB00BAWgIR0CaR/3hGYrsdX2UKGgGR0BwBuvRqoIfaAdNEgFoCEdAmkgsk2P1c3V9lChoBkdAc6E41P3ztmgHTRYBaAhHQJpItkz41xd1fZQoaAZHQG0w1cUuctpoB0vtaAhHQJpI8H4XXRR1fZQoaAZHQHHiXvlU6xRoB00bAWgIR0CaShbxVhkRdX2UKGgGR0BwrAzguRLcaAdNywFoCEdAmk6cLncL0HV9lChoBkdAbt4EZiuuBGgHTUgBaAhHQJpOtkvsZ511fZQoaAZHQHCs58neBQNoB00aAWgIR0CaULIkqto0dX2UKGgGR0BwbKHck+otaAdNPAFoCEdAmlEMCtA9m3V9lChoBkdAcEZAaNuLrGgHTW0BaAhHQJpR2KO1fE51fZQoaAZHQG7GG78Nx2loB00HAWgIR0CaUdYsd1dPdX2UKGgGR0BxZC08eS0TaAdNDgFoCEdAmlIxUR3/xXV9lChoBkdAcla0kGA09GgHS/toCEdAmlJNZ7ojfXV9lChoBkdAcOpEGqxTsWgHTR4BaAhHQJpSl/LDAJt1fZQoaAZHQHD3zH4oJAtoB00tAWgIR0CaUraP0Zm7dX2UKGgGR0Bxv53gUDdQaAdNMwFoCEdAmlK7tqpLmXV9lChoBkdAcY+/Aj6eoWgHTSMBaAhHQJpSxfu1F6R1fZQoaAZHQG1d/SQYDT1oB00lAWgIR0CaUwGaQV9GdX2UKGgGR0BwgBLwnYxtaAdNHgFoCEdAmlNXm3fAK3V9lChoBkdAcR/VTJhfB2gHTREBaAhHQJpTyXKKYRd1fZQoaAZHQHCoQKneiztoB009AmgIR0CaVBdnkDISdX2UKGgGR0Bwj0pw0fozaAdNAAFoCEdAmlXVgtvn83V9lChoBkdAcgwprDZUUGgHTSoBaAhHQJpXG1Z1V5t1fZQoaAZHQHGENqk/KQtoB00CAWgIR0CaV9akhzNmdX2UKGgGR0A+dmqo60Y1aAdL62gIR0CaWEBsQ/X5dX2UKGgGR0ByMdDv3JxOaAdNEAFoCEdAmlj8qaw2VHV9lChoBkdAcMv0CA+Y+mgHTToBaAhHQJpZUbsF+ux1fZQoaAZHQHFTkMLF4s5oB00cAWgIR0CaWWHRTjvNdX2UKGgGR0BxzlvrGBFvaAdNFwFoCEdAmlmST2WY4XV9lChoBkdAbyYO8TSLImgHTQcBaAhHQJprboRqXWx1fZQoaAZHQHCxSULUkOZoB00iAWgIR0Caa73Ytg8bdX2UKGgGR0BwQzq3VkMDaAdNIQFoCEdAmmvVJUYKpnV9lChoBkdAcYVmWdEsrmgHTSMBaAhHQJpr8QqZtvZ1fZQoaAZHQHCYCmuTzNFoB00nAWgIR0Caa//gBLf2dX2UKGgGR0ByagOrhisoaAdNHwFoCEdAmmxxLwnYx3V9lChoBkdAb1MIeHSF5GgHTRsBaAhHQJptMyhzvJB1fZQoaAZHQHHTVQdjoZBoB00/AWgIR0CabbQ4jrzHdX2UKGgGR0BvzOivgWJraAdNCAFoCEdAmm6FE/jbSXV9lChoBkdASmqoddVvM2gHS99oCEdAmm6YrnTy8XV9lChoBkdAce9BGQSzxGgHS/5oCEdAmnABjJ+2E3V9lChoBkdAb2zko4MnZ2gHTR4BaAhHQJpxZVOsT391fZQoaAZHQG62oFFDv3JoB00WAWgIR0Cack98JD3NdX2UKGgGR0BtsvIXCTEBaAdNFwFoCEdAmnJq0hNdq3V9lChoBkdAcugseGO+7GgHTQsBaAhHQJpypD5TIeZ1fZQoaAZHQG/iI60Y0l9oB00KAWgIR0CacxQ+EAYIdX2UKGgGR0BxZ4X9BKL9aAdNFAFoCEdAmnOncxj8UHV9lChoBkdAbTMebNKRMmgHTRcBaAhHQJp0cGMXJo11fZQoaAZHQG+iS/j81oBoB00CAWgIR0CadNeMQ2/BdX2UKGgGR0BzNlkI5YHPaAdNYAFoCEdAmnUX0btJF3V9lChoBkdAcGln3L3bmGgHTVIBaAhHQJp1lF/hESd1fZQoaAZHQHKpHf642CNoB02UAWgIR0Cadhhb4agmdX2UKGgGR0BxGO0QbuMNaAdNNwFoCEdAmnb1e0G/vnV9lChoBkdAccyfyf+S82gHTS0BaAhHQJp4C3UhFE11fZQoaAZHQHAy8Cgbp/xoB004AWgIR0CaeGFUhmoSdX2UKGgGR0ByKhDu0CzUaAdNKAFoCEdAmnoHzDn/1nV9lChoBkdAcQWHJLdvbWgHTQ4BaAhHQJp60wL3K0V1fZQoaAZHQHEoFYQrc0toB0v6aAhHQJp7Jh5PdmB1fZQoaAZHQHMBLQgLZzxoB00CAWgIR0Cae8KhtcfOdX2UKGgGR0BuGeHYYixFaAdNEgFoCEdAmn0G/i5uqHV9lChoBkdAcmnuLrHEM2gHTTIBaAhHQJp9f9Hc1wZ1fZQoaAZHQHAFpy2hIvtoB00wAWgIR0CafzzIV/MGdX2UKGgGR0BwdSmALApKaAdNTwJoCEdAmn9KHTI/7nV9lChoBkdAcGiw2VE/jmgHTQkBaAhHQJp/cpTdcjZ1fZQoaAZHQHICfNzKcNJoB00aAWgIR0Caf+B42S+ydX2UKGgGR0Bvx5B5X2dvaAdNNQFoCEdAmoBysbNr03V9lChoBkdAbSwHXVbzLGgHTR0BaAhHQJqA60CzTnd1fZQoaAZHQG7aDTjNpudoB00bAWgIR0CagVN2ki2VdX2UKGgGR0BtYZ9Aood/aAdL+2gIR0CagVICU5dXdX2UKGgGR0BtFRHI6r/9aAdNAgFoCEdAmoIlrl/6PHV9lChoBkdANh+L3sXzlWgHS8loCEdAmoKYIF/x2HV9lChoBkdAb8ala8pTdmgHTQ8BaAhHQJqCpi9Zid91fZQoaAZHQHHOlGgBcRloB0vqaAhHQJqD93X7LuB1fZQoaAZHQHB6mZJCjUNoB00vAWgIR0CahLloUSIydX2UKGgGR0BxkLhuO0b+aAdL+WgIR0CahSZG8VYZdX2UKGgGR0BwyIH4XXRPaAdNDgFoCEdAmoYG8mKIi3V9lChoBkdAcfZxsEaESWgHTUsBaAhHQJqGByFPBSF1fZQoaAZHQG+PI0qH449oB00bAWgIR0Cah3sJ6Y3OdX2UKGgGR0ButpgAp8WsaAdNBAFoCEdAmoelq33HrHV9lChoBkdAcENFMZgogGgHS/1oCEdAmofLpeNT+HV9lChoBkdAcqt0dRzij2gHTUEBaAhHQJqIpstTUAl1fZQoaAZHQHH4I/A0sOJoB01DAWgIR0CaiM2g3974dX2UKGgGR0BzAyNFSbYsaAdNBwFoCEdAmool5jYqXnV9lChoBkdAcOIIqLCN0mgHTWoBaAhHQJqKMqgAZKp1fZQoaAZHQHEsrBoEjgRoB01NAWgIR0CaipR5C4SZdX2UKGgGR0BxzAsUZeiSaAdNIQFoCEdAmoroZAIIGHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 272, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}