kfkas commited on
Commit
87bbb2e
β€’
1 Parent(s): 8768570

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +160 -191
README.md CHANGED
@@ -1,199 +1,168 @@
1
  ---
 
 
 
 
2
  library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ - ko
5
+ license: llama3
6
  library_name: transformers
7
+ base_model:
8
+ - meta-llama/Meta-Llama-3-8B
9
  ---
10
 
11
+ <a href="https://taemin6697.github.io/">
12
+ <img src="https://github.com/taemin6697/taemin6697/assets/96530685/46a29020-e640-4e74-9d77-f12e466fc706" width="40%" height="50%">
13
+ </a>
14
 
15
+ # Hansung Bllossom | [Demo]() | [Developer κΉ€νƒœλ―Ό](https://taemin6697.github.io/) | [Github](https://github.com/taemin6697/HansungGPT/tree/main) |
16
 
17
+ ```bash
18
+ ν•œμ„±λŒ€ν•™κ΅ QA 기반으둜 ν•™μŠ΅μ‹œν‚¨Hansung-Llama-3-8B λ₯Ό μΆœμ‹œν•©λ‹ˆλ‹€.
19
+ μ΄λŠ” beomi/Llama-3-KoEn-8B-Instruct-preview 을 기반으둜 ν•™μŠ΅λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
20
+ ```
21
+
22
+ The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3. It enhances the connection of knowledge between Korean and English. It has the following features:
23
 
24
+ * **Knowledge Linking**: Linking Korean and English knowledge through additional training
25
+ * **Vocabulary Expansion**: Expansion of Korean vocabulary to enhance Korean expressiveness.
26
+ * **Instruction Tuning**: Tuning using custom-made instruction following data specialized for Korean language and Korean culture
27
+ * **Human Feedback**: DPO has been applied
28
+ * **Vision-Language Alignment**: Aligning the vision transformer with this language model
29
+
30
+ ## Example code
31
+
32
+ ### Install Dependencies
33
+ ```bash
34
+ pip install torch transformers==4.40.0 accelerate
35
+ ```
36
 
37
+ ### Python code with Pipeline
38
+ ```python
39
+ import transformers
40
+ import torch
41
+
42
+ model_id = "kfkas/Hansung-Llama-3-8B"
43
+
44
+ pipeline = transformers.pipeline(
45
+ "text-generation",
46
+ model=model_id,
47
+ model_kwargs={"torch_dtype": torch.bfloat16},
48
+ device_map="auto",
49
+ )
50
+
51
+ pipeline.model.eval()
52
+
53
+ PROMPT = '''당신은 μœ μš©ν•œ AI μ–΄μ‹œμŠ€ν„΄νŠΈμž…λ‹ˆλ‹€. μ‚¬μš©μžμ˜ μ§ˆμ˜μ— λŒ€ν•΄ μΉœμ ˆν•˜κ³  μ •ν™•ν•˜κ²Œ λ‹΅λ³€ν•΄μ•Ό ν•©λ‹ˆλ‹€.
54
+ You are a helpful AI assistant, you'll need to answer users' queries in a friendly and accurate manner.'''
55
+ instruction = "ν•œμ„±λŒ€ν•™κ΅μ—μ„œλŠ” μ–΄λ–€ μΆ•μ œλ‚˜ 행사가 μ—΄λ¦¬λ‚˜μš”?"
56
+
57
+ messages = [
58
+ {"role": "system", "content": f"{PROMPT}"},
59
+ {"role": "user", "content": f"{instruction}"}
60
+ ]
61
+
62
+ prompt = pipeline.tokenizer.apply_chat_template(
63
+ messages,
64
+ tokenize=False,
65
+ add_generation_prompt=True
66
+ )
67
+
68
+ terminators = [
69
+ pipeline.tokenizer.eos_token_id,
70
+ pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
71
+ ]
72
+
73
+ outputs = pipeline(
74
+ prompt,
75
+ max_new_tokens=2048,
76
+ eos_token_id=terminators,
77
+ do_sample=True,
78
+ temperature=0.6,
79
+ top_p=0.9
80
+ )
81
+
82
+ print(outputs[0]["generated_text"][len(prompt):])
83
+
84
+ ```
85
+
86
+ ### Python code with AutoModel
87
+ ```python
88
+
89
+ import os
90
+ import torch
91
+ from transformers import AutoTokenizer, AutoModelForCausalLM
92
+
93
+ model_id = 'kfkas/Hansung-Llama-3-8B'
94
+
95
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
96
+ model = AutoModelForCausalLM.from_pretrained(
97
+ model_id,
98
+ torch_dtype=torch.bfloat16,
99
+ device_map="auto",
100
+ )
101
+
102
+ model.eval()
103
+
104
+ PROMPT = '''당신은 μœ μš©ν•œ AI μ–΄μ‹œμŠ€ν„΄νŠΈμž…λ‹ˆλ‹€. μ‚¬μš©μžμ˜ μ§ˆμ˜μ— λŒ€ν•΄ μΉœμ ˆν•˜κ³  μ •ν™•ν•˜κ²Œ λ‹΅λ³€ν•΄μ•Ό ν•©λ‹ˆλ‹€.
105
+ You are a helpful AI assistant, you'll need to answer users' queries in a friendly and accurate manner.'''
106
+ instruction = "ν•œμ„±λŒ€ν•™κ΅λŠ” μ–Έμ œ μ„€λ¦½λ˜μ—ˆλ‚˜μš”?"
107
+
108
+ messages = [
109
+ {"role": "system", "content": f"{PROMPT}"},
110
+ {"role": "user", "content": f"{instruction}"}
111
+ ]
112
+
113
+ input_ids = tokenizer.apply_chat_template(
114
+ messages,
115
+ add_generation_prompt=True,
116
+ return_tensors="pt"
117
+ ).to(model.device)
118
+
119
+ terminators = [
120
+ tokenizer.eos_token_id,
121
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
122
+ ]
123
+
124
+ outputs = model.generate(
125
+ input_ids,
126
+ max_new_tokens=2048,
127
+ eos_token_id=terminators,
128
+ do_sample=True,
129
+ temperature=0.6,
130
+ top_p=0.9
131
+ )
132
+
133
+ print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
134
+ ```
135
+
136
+
137
+
138
+ ## Citation
139
+ **Language Model**
140
+ ```text
141
+ @misc{bllossom,
142
+ author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
143
+ title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
144
+ year = {2024},
145
+ journal = {LREC-COLING 2024},
146
+ paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
147
+ },
148
+ }
149
+ ```
150
+
151
+ **Vision-Language Model**
152
+ ```text
153
+ @misc{bllossom-V,
154
+ author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
155
+ title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
156
+ year = {2024},
157
+ publisher = {GitHub},
158
+ journal = {NAACL 2024 findings},
159
+ paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
160
+ },
161
+ }
162
+ ```
163
+
164
+ ## Contact
165
+ - κΉ€νƒœλ―Ό(Taemin Kim), Intelligent System. `[email protected]`
166
+
167
+ ## Contributor
168
+ - κΉ€νƒœλ―Ό(Taemin Kim), Intelligent System. `taemin6697@gmail.com`