File size: 6,673 Bytes
e0c87e0 aebb561 24298a5 aebb561 24298a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
library_name: keras-hub
---
## Model Overview
BART encoder-decoder network.
This class implements a Transformer-based encoder-decoder model as
described in
["BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension"](https://arxiv.org/abs/1910.13461).
The default constructor gives a fully customizable, randomly initialized BART
model with any number of layers, heads, and embedding dimensions. To load
preset architectures and weights, use the `from_preset` constructor.
Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind. The underlying model is provided by a
third party and subject to a separate license, available
[here](https://github.com/facebookresearch/fairseq/).
__Arguments__
- __vocabulary_size__: int. The size of the token vocabulary.
- __num_layers__: int. The number of transformer encoder layers and
transformer decoder layers.
- __num_heads__: int. The number of attention heads for each transformer.
The hidden size must be divisible by the number of attention heads.
- __hidden_dim__: int. The size of the transformer encoding and pooler layers.
- __intermediate_dim__: int. The output dimension of the first Dense layer in
a two-layer feedforward network for each transformer.
- __dropout__: float. Dropout probability for the Transformer encoder.
- __max_sequence_length__: int. The maximum sequence length that this encoder
can consume. If None, `max_sequence_length` uses the value from
sequence length. This determines the variable shape for positional
embeddings.
## Example Usage
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation, given an input context.
```python
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate("The quick brown fox", max_length=30)
# Generate with batched inputs.
bart_lm.generate(["The quick brown fox", "The whale"], max_length=30)
```
Compile the `generate()` function with a custom sampler.
```python
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.compile(sampler="greedy")
bart_lm.generate("The quick brown fox", max_length=30)
```
Use `generate()` with encoder inputs and an incomplete decoder input (prompt).
```python
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate(
{
"encoder_text": "The quick brown fox",
"decoder_text": "The fast"
}
)
```
Use `generate()` without preprocessing.
```python
# Preprocessed inputs, with encoder inputs corresponding to
# "The quick brown fox", and the decoder inputs to "The fast". Use
# `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"encoder_token_ids": np.array([[0, 133, 2119, 6219, 23602, 2, 1, 1]]),
"encoder_padding_mask": np.array(
[[True, True, True, True, True, True, False, False]]
),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2, 1, 1]]),
"decoder_padding_mask": np.array([[True, True, True, True, False, False]])
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = {
"encoder_text": ["The quick brown fox jumped.", "I forgot my homework."],
"decoder_text": ["The fast hazel fox leapt.", "I forgot my assignment."]
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"encoder_token_ids": np.array([[0, 133, 2119, 2, 1]] * 2),
"encoder_padding_mask": np.array([[1, 1, 1, 1, 0]] * 2),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2]] * 2),
"decoder_padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[0, 133, 1769, 2, 1]] * 2)
sw = np.array([[1, 1, 1, 1, 0]] * 2)
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
## Example Usage with Hugging Face URI
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation, given an input context.
```python
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
bart_lm.generate("The quick brown fox", max_length=30)
# Generate with batched inputs.
bart_lm.generate(["The quick brown fox", "The whale"], max_length=30)
```
Compile the `generate()` function with a custom sampler.
```python
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
bart_lm.compile(sampler="greedy")
bart_lm.generate("The quick brown fox", max_length=30)
```
Use `generate()` with encoder inputs and an incomplete decoder input (prompt).
```python
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
bart_lm.generate(
{
"encoder_text": "The quick brown fox",
"decoder_text": "The fast"
}
)
```
Use `generate()` without preprocessing.
```python
# Preprocessed inputs, with encoder inputs corresponding to
# "The quick brown fox", and the decoder inputs to "The fast". Use
# `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"encoder_token_ids": np.array([[0, 133, 2119, 6219, 23602, 2, 1, 1]]),
"encoder_padding_mask": np.array(
[[True, True, True, True, True, True, False, False]]
),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2, 1, 1]]),
"decoder_padding_mask": np.array([[True, True, True, True, False, False]])
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"hf://keras/bart_base_en",
preprocessor=None,
)
bart_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = {
"encoder_text": ["The quick brown fox jumped.", "I forgot my homework."],
"decoder_text": ["The fast hazel fox leapt.", "I forgot my assignment."]
}
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset("hf://keras/bart_base_en")
bart_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"encoder_token_ids": np.array([[0, 133, 2119, 2, 1]] * 2),
"encoder_padding_mask": np.array([[1, 1, 1, 1, 0]] * 2),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2]] * 2),
"decoder_padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[0, 133, 1769, 2, 1]] * 2)
sw = np.array([[1, 1, 1, 1, 0]] * 2)
bart_lm = keras_hub.models.BartSeq2SeqLM.from_preset(
"hf://keras/bart_base_en",
preprocessor=None,
)
bart_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
|