Upload folder using huggingface_hub
Browse files- README.md +99 -87
- model-00001-of-00002.safetensors +1 -1
- model-00002-of-00002.safetensors +1 -1
README.md
CHANGED
@@ -2,16 +2,16 @@
|
|
2 |
license: other
|
3 |
license_name: katanemo-research
|
4 |
license_link: >-
|
5 |
-
https://huggingface.co/
|
6 |
base_model:
|
7 |
-
- Qwen/Qwen2.5-
|
8 |
language:
|
9 |
- en
|
10 |
pipeline_tag: text-generation
|
11 |
library_name: transformers
|
12 |
---
|
13 |
|
14 |
-
# katanemo/Arch-Function-
|
15 |
|
16 |
## Overview
|
17 |
The Katanemo Arch-Function collection of large language models (LLMs) is a collection state-of-the-art (SOTA) LLMs specifically designed for **function calling** tasks. The models are designed to understand complex function signatures, identify required parameters, and produce accurate function call outputs based on natural language prompts. Achieving performance on par with GPT-4, these models set a new benchmark in the domain of function-oriented tasks, making them suitable for scenarios where automated API interaction and function execution is crucial.
|
@@ -54,7 +54,7 @@ Katanemo Arch-Function collection is built on top of the [Qwen 2.5](https://hugg
|
|
54 |
|
55 |
|
56 |
## Performance Benchmarks
|
57 |
-
We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard). For each model family, we select the one with the highest rank.
|
58 |
|
59 |
<table>
|
60 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
@@ -75,109 +75,121 @@ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Lead
|
|
75 |
</tr>
|
76 |
<tr style="text-align: center; vertical-align: middle;">
|
77 |
<td>1</td>
|
78 |
-
<td>GPT-
|
79 |
-
<td>
|
80 |
-
<td>
|
81 |
-
<td>
|
82 |
-
<td>
|
83 |
-
<td>
|
84 |
-
<td>
|
85 |
-
<td>
|
86 |
</tr>
|
87 |
<tr style="text-align: center; vertical-align: middle;">
|
88 |
-
<td>
|
89 |
-
<td>
|
90 |
-
<td>59.
|
91 |
-
<td>
|
92 |
-
<td>
|
93 |
-
<td>
|
94 |
-
<td>
|
95 |
-
<td>
|
96 |
-
<td>
|
97 |
</tr>
|
98 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
99 |
<td> </td>
|
100 |
<td>Arch-Function-7B</td>
|
101 |
-
<td>
|
102 |
-
<td>
|
103 |
-
<td>
|
104 |
-
<td>
|
105 |
-
<td>
|
106 |
-
<td>
|
107 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
</tr>
|
109 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
110 |
<td> </td>
|
111 |
<td>Arch-Function-3B</td>
|
112 |
-
<td>56.
|
113 |
-
<td>
|
114 |
-
<td>
|
115 |
-
<td>
|
116 |
-
<td>
|
117 |
-
<td>
|
118 |
-
<td>
|
119 |
-
</tr>
|
120 |
-
<tr style="text-align: center; vertical-align: middle;">
|
121 |
-
<td>7</td>
|
122 |
-
<td>mistral-large-2407</td>
|
123 |
-
<td>55.82%</td>
|
124 |
-
<td>84.12%</td>
|
125 |
-
<td>83.09%</td>
|
126 |
-
<td>67.17%</td>
|
127 |
-
<td>20.50%</td>
|
128 |
-
<td>78.05%</td>
|
129 |
-
<td>48.93%</td>
|
130 |
-
</tr>
|
131 |
-
<tr style="text-align: center; vertical-align: middle;">
|
132 |
-
<td>9</td>
|
133 |
-
<td>Claude-3.5-Sonnet-20240620</td>
|
134 |
-
<td>54.83%</td>
|
135 |
-
<td>70.35%</td>
|
136 |
-
<td>66.34%</td>
|
137 |
-
<td>71.39%</td>
|
138 |
-
<td>23.5%</td>
|
139 |
-
<td>63.41%</td>
|
140 |
-
<td>75.91%</td>
|
141 |
</tr>
|
142 |
</tr>
|
143 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
144 |
<td> </td>
|
145 |
<td>Arch-Function-1.5B</td>
|
146 |
-
<td>
|
147 |
-
<td>
|
148 |
-
<td>
|
149 |
-
<td>
|
150 |
-
<td>
|
151 |
-
<td>
|
152 |
-
<td>
|
153 |
</tr>
|
154 |
-
|
155 |
-
|
156 |
-
<td>
|
157 |
-
<td>
|
158 |
-
<td>
|
159 |
-
<td>
|
160 |
-
<td>
|
161 |
-
<td>
|
162 |
-
<td>
|
163 |
-
<td>
|
|
|
164 |
</tr>
|
165 |
-
<tr style="text-align: center; vertical-align: middle;">
|
166 |
-
<td>
|
167 |
-
<td>
|
168 |
-
<td>53.
|
169 |
-
<td>
|
170 |
-
<td>
|
171 |
-
<td>
|
172 |
-
<td>
|
173 |
-
<td>
|
174 |
-
<td>76
|
175 |
</tr>
|
176 |
</table>
|
177 |
|
178 |
|
179 |
# Requirements
|
180 |
-
The code of Arch-Function-
|
181 |
```bash
|
182 |
pip install transformers>=4.37.0
|
183 |
```
|
@@ -193,7 +205,7 @@ import json
|
|
193 |
from typing import Any, Dict, List
|
194 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
195 |
|
196 |
-
model_name = "katanemo/Arch-Function-
|
197 |
model = AutoModelForCausalLM.from_pretrained(
|
198 |
model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
199 |
)
|
@@ -332,4 +344,4 @@ The current temperature in Seattle is 62 degrees in Fahrenheit.
|
|
332 |
|
333 |
|
334 |
# License
|
335 |
-
Katanemo Arch-Function collection is distributed under the [Katanemo license](https://huggingface.co/
|
|
|
2 |
license: other
|
3 |
license_name: katanemo-research
|
4 |
license_link: >-
|
5 |
+
https://huggingface.co/katanemolabs/Arch-Function-1.5B/blob/main/LICENSE
|
6 |
base_model:
|
7 |
+
- Qwen/Qwen2.5-1.5B-Instruct
|
8 |
language:
|
9 |
- en
|
10 |
pipeline_tag: text-generation
|
11 |
library_name: transformers
|
12 |
---
|
13 |
|
14 |
+
# katanemo/Arch-Function-1.5B
|
15 |
|
16 |
## Overview
|
17 |
The Katanemo Arch-Function collection of large language models (LLMs) is a collection state-of-the-art (SOTA) LLMs specifically designed for **function calling** tasks. The models are designed to understand complex function signatures, identify required parameters, and produce accurate function call outputs based on natural language prompts. Achieving performance on par with GPT-4, these models set a new benchmark in the domain of function-oriented tasks, making them suitable for scenarios where automated API interaction and function execution is crucial.
|
|
|
54 |
|
55 |
|
56 |
## Performance Benchmarks
|
57 |
+
We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard). We compare with commonly-used models and the results (as of Oct 21st, 2024) are shwon below. For each model family, we select the one with the highest rank.
|
58 |
|
59 |
<table>
|
60 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
|
|
75 |
</tr>
|
76 |
<tr style="text-align: center; vertical-align: middle;">
|
77 |
<td>1</td>
|
78 |
+
<td>GPT-4o-2024-08-06 (FC)</td>
|
79 |
+
<td>62.19%</td>
|
80 |
+
<td>85.90%</td>
|
81 |
+
<td>85.64%</td>
|
82 |
+
<td>75.43%</td>
|
83 |
+
<td>25.00%</td>
|
84 |
+
<td>63.41%</td>
|
85 |
+
<td>82.93%</td>
|
86 |
</tr>
|
87 |
<tr style="text-align: center; vertical-align: middle;">
|
88 |
+
<td>6</td>
|
89 |
+
<td>o1-preview-2024-09-12 (Prompt)</td>
|
90 |
+
<td>59.27%</td>
|
91 |
+
<td>86.42%</td>
|
92 |
+
<td>88.88%</td>
|
93 |
+
<td>73.08%</td>
|
94 |
+
<td>17.62%</td>
|
95 |
+
<td>73.17%</td>
|
96 |
+
<td>74.60%</td>
|
97 |
</tr>
|
98 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
99 |
<td> </td>
|
100 |
<td>Arch-Function-7B</td>
|
101 |
+
<td>58.44%</td>
|
102 |
+
<td>85.58%</td>
|
103 |
+
<td>88.14%</td>
|
104 |
+
<td>69.08%</td>
|
105 |
+
<td>20.50%</td>
|
106 |
+
<td>92.68%</td>
|
107 |
+
<td>74.05%</td>
|
108 |
+
</tr>
|
109 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
110 |
+
<td>9</td>
|
111 |
+
<td>Gemini-1.5-Flash-002 (Prompt)</td>
|
112 |
+
<td>57.92%</td>
|
113 |
+
<td>86.58%</td>
|
114 |
+
<td>89.48%</td>
|
115 |
+
<td>76.28%</td>
|
116 |
+
<td>9.88%</td>
|
117 |
+
<td>85.37%</td>
|
118 |
+
<td>78.54%</td>
|
119 |
+
</tr>
|
120 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
121 |
+
<td>12</td>
|
122 |
+
<td>Claude-3.5-Sonnet-20240620 (FC)</td>
|
123 |
+
<td>57.42%</td>
|
124 |
+
<td>70.04%</td>
|
125 |
+
<td>66.27%</td>
|
126 |
+
<td>74.68%</td>
|
127 |
+
<td>28.38%</td>
|
128 |
+
<td>68.29%</td>
|
129 |
+
<td>74.58%</td>
|
130 |
+
</tr>
|
131 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
132 |
+
<td>13</td>
|
133 |
+
<td>mistral-large-2407 (FC)</td>
|
134 |
+
<td>56.80%</td>
|
135 |
+
<td>86.62%</td>
|
136 |
+
<td>84.57%</td>
|
137 |
+
<td>68.37%</td>
|
138 |
+
<td>20.62%</td>
|
139 |
+
<td>75.61%</td>
|
140 |
+
<td>49.44%</td>
|
141 |
</tr>
|
142 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
143 |
<td> </td>
|
144 |
<td>Arch-Function-3B</td>
|
145 |
+
<td>56.57%</td>
|
146 |
+
<td>83.62%</td>
|
147 |
+
<td>85.36%</td>
|
148 |
+
<td>66.90%</td>
|
149 |
+
<td>19.50%</td>
|
150 |
+
<td>97.56%</td>
|
151 |
+
<td>70.99%</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
</tr>
|
153 |
</tr>
|
154 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
155 |
<td> </td>
|
156 |
<td>Arch-Function-1.5B</td>
|
157 |
+
<td>54.52%</td>
|
158 |
+
<td>80.31%</td>
|
159 |
+
<td>82.04%</td>
|
160 |
+
<td>66.19%</td>
|
161 |
+
<td>17.25%</td>
|
162 |
+
<td>97.56%</td>
|
163 |
+
<td>69.95%</td>
|
164 |
</tr>
|
165 |
+
|
166 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
167 |
+
<td>21</td>
|
168 |
+
<td>Llama-3.1-70B-Instruct (Prompt)</td>
|
169 |
+
<td>53.67%</td>
|
170 |
+
<td>88.90%</td>
|
171 |
+
<td>89.34%</td>
|
172 |
+
<td>61.13%</td>
|
173 |
+
<td>12.38%</td>
|
174 |
+
<td>92.68%</td>
|
175 |
+
<td>58.38%</td>
|
176 |
</tr>
|
177 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
178 |
+
<td>22</td>
|
179 |
+
<td>Gemma-2-27b-it (Prompt)</td>
|
180 |
+
<td>53.66%</td>
|
181 |
+
<td>88.52%</td>
|
182 |
+
<td>87.89%</td>
|
183 |
+
<td>69.48%</td>
|
184 |
+
<td>4.12%</td>
|
185 |
+
<td>87.8%</td>
|
186 |
+
<td>68.76%</td>
|
187 |
</tr>
|
188 |
</table>
|
189 |
|
190 |
|
191 |
# Requirements
|
192 |
+
The code of Arch-Function-1.5B has been in the Hugging Face `transformers` library and we advise you to install latest version:
|
193 |
```bash
|
194 |
pip install transformers>=4.37.0
|
195 |
```
|
|
|
205 |
from typing import Any, Dict, List
|
206 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
207 |
|
208 |
+
model_name = "katanemo/Arch-Function-1.5B"
|
209 |
model = AutoModelForCausalLM.from_pretrained(
|
210 |
model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
211 |
)
|
|
|
344 |
|
345 |
|
346 |
# License
|
347 |
+
Katanemo Arch-Function collection is distributed under the [Katanemo license](https://huggingface.co/katanemolabs/Arch-Function-1.5B/blob/main/LICENSE).
|
model-00001-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4957560304
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d13942083f5a22837c4b9bd5341221f18f5303f12a53afadaceea02ac79b771
|
3 |
size 4957560304
|
model-00002-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1214366696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1445b032668c261f394138703eef06d2ec97c1eb568fe5c00ed8494158564c93
|
3 |
size 1214366696
|