File size: 13,790 Bytes
855d824
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7aea96ecfc70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aea96ecfd00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aea96ecfd90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aea96ecfe20>", "_build": "<function ActorCriticPolicy._build at 0x7aea96ecfeb0>", "forward": "<function ActorCriticPolicy.forward at 0x7aea96ecff40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aea96ce0040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aea96ce00d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7aea96ce0160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aea96ce01f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aea96ce0280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aea96ce0310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aea96e7d740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708999945005398391, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACHuD2uDYW6s5z/OWymAjVCRcS6+rgTuQAAgD8AAIA/AJJNvUiPhboidbK6Zn2otQdVfLm70c85AACAPwAAgD+ajTA+HBRVP2omBL629pW+V9NsvUlfA70AAAAAAAAAAOOAYb4l9Yk/5Aq5Ph1VkL74OII9CN02PgAAAAAAAAAAAFW6vXu0/bi64sO7G1GZN/6XXzvgX+22AACAPwAAgD8ztsU8w6k6uikfpLsPtYY4eRVFOXJa3TgAAIA/AACAP80MILvhpoy6ddWOu3zfpjiuGzA7zSMbOgAAgD8AAIA/wLqNPdfzY7l2FEo5VQuUstdjMbpKSHG4AACAPwAAgD/NNPy71r+6PxAn5b1nGZQ+uikfvFOYu70AAAAAAAAAAGYyyTtcm0y6trhMu4v/OrY/IVy6RbdtOgAAgD8AAIA/QHKwvTh38T6SqWE+d757vnsxvjx272i9AAAAAAAAAABNmdc9oNSbP2MZBD7lHou+tEUlPirDgDwAAAAAAAAAAJqNrbwfXcS5qOhlud7BrrFdqa67ot2IOAAAgD8AAIA/zWIzvPbkb7q6b0G5C3cntAbqKbpqlmI4AACAPwAAgD+Kgak+Y0hPP51B/72jRT6+4P7KPVPkhL0AAAAAAAAAAJoZnbv405s/Op2NvEIJhb42T8K9zt0PPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRPrBbfP5aMAWyUTegDjAF0lEdAli6HPeHi33V9lChoBkdAYGdcnE2pAGgHTegDaAhHQJY2cwXZXdV1fZQoaAZHQGJ5uGj9GZxoB03oA2gIR0CWODdJJ5E/dX2UKGgGR0Bi3CCg9NeuaAdN6ANoCEdAljhfozN2T3V9lChoBkdAb72N3np0OmgHTWoDaAhHQJZBKaoddVx1fZQoaAZHQF7ClIEr5IpoB03oA2gIR0CWQgv1DjR2dX2UKGgGR0BjZlF2FFlTaAdN6ANoCEdAlkT1oDgZTHV9lChoBkdAXT5L/S6UaGgHTegDaAhHQJZHCizsyBV1fZQoaAZHQGUIWDxsl9loB03oA2gIR0CWZ6qt5le4dX2UKGgGR0BgQ/yup0fYaAdN6ANoCEdAlm+gV0tAcHV9lChoBkdAZc0tGus90WgHTegDaAhHQJZ3ljmSyMV1fZQoaAZHQG4oTFVDKHRoB000AmgIR0CWemRWLgn/dX2UKGgGR0Bjq0J+lTFVaAdN6ANoCEdAlohtS2phnnV9lChoBkdAYmcvicXm/2gHTegDaAhHQJaLmlhw2l51fZQoaAZHQFu1iJfpljFoB03oA2gIR0CWi/eWfK6ndX2UKGgGR0Bn6DqbBoEkaAdN6ANoCEdAlo0qzZ6D5HV9lChoBkdAZ41CY1He8GgHTegDaAhHQJaPNyfcvdx1fZQoaAZHQGH/lCTlkpZoB03oA2gIR0CWlisjFAE/dX2UKGgGR0BdpGFJxvNvaAdN6ANoCEdAlp2jBuXNT3V9lChoBkdAZd/yRSxZ+2gHTegDaAhHQJafbYukDZF1fZQoaAZHQEmk4NI9TxZoB00YAWgIR0CWpEVkMCtBdX2UKGgGR0BksMNc4YJmaAdN6ANoCEdAlqfng9/z8XV9lChoBkdAY//dfsu3+mgHTegDaAhHQJao3CpFTeh1fZQoaAZHQGcI2SdOIqNoB03oA2gIR0CWrDG6f8MvdX2UKGgGR0BgiTnvDxb0aAdN6ANoCEdAlq7MMEzO5nV9lChoBkdAYrlnh86V+2gHTegDaAhHQJbPBKVY6n11fZQoaAZHQGGhaZx7zCloB03oA2gIR0CW1e7I1cdHdX2UKGgGR0BfRTWwu/UOaAdN6ANoCEdAlt0xnFo+OnV9lChoBkdAY/ZZ8KG+K2gHTegDaAhHQJbgK4FzMid1fZQoaAZHQHGFNUS7GvRoB02JA2gIR0CW5L7vG6wudX2UKGgGR0BrhS2x6fJ4aAdNJgJoCEdAluWprtVrAXV9lChoBkdAbzuMUAT7EmgHTWECaAhHQJbuDIvJzT51fZQoaAZHQGDHeGoJiRZoB03oA2gIR0CW71DQqqffdX2UKGgGR0BajygGr0aqaAdN6ANoCEdAlu+cUIsyz3V9lChoBkdAZdVCQ9zOo2gHTegDaAhHQJbwr101ZT11fZQoaAZHQEupbX6InBtoB00AAWgIR0CW9H8x9G7SdX2UKGgGR0BlvNorWiDeaAdN6ANoCEdAlvg13MY/FHV9lChoBkdAcjyLCN0eVGgHTUkCaAhHQJb8x5E+gUV1fZQoaAZHQGP1YZ/CqIdoB03oA2gIR0CW/ylMRHwxdX2UKGgGR0BjBRJmNBGAaAdN6ANoCEdAlwDPttygf3V9lChoBkdAZgO9r433pWgHTegDaAhHQJcJ6nKnvUl1fZQoaAZHQGT+6eXiR4hoB03oA2gIR0CXDRr6+FlDdX2UKGgGR0Bhbf1UVBUraAdN6ANoCEdAlw8S6xxDLXV9lChoBkdAcBNy2x6fJ2gHTd8BaAhHQJcRtZA6dUd1fZQoaAZHQG9y9THbRF9oB01lA2gIR0CXM3E74i5edX2UKGgGR0BC8d5prULEaAdNMAFoCEdAlzWDc2zfJnV9lChoBkdAYdZeruIAO2gHTegDaAhHQJc23YBeXzF1fZQoaAZHQHDpBVQyhzxoB00aAmgIR0CXPAZGax5cdX2UKGgGR0Br9upIczZZaAdNhgFoCEdAlz8SFbmlqXV9lChoBkdAY+wKKHfuTmgHTegDaAhHQJdC8am4y451fZQoaAZHQGIO6mwaBI5oB03oA2gIR0CXQ8SAYpDvdX2UKGgGR0BwEVZid8RdaAdNpwJoCEdAl0Q3izcAR3V9lChoBkdAcJcrvLHMlmgHTZkDaAhHQJdGDSOR1YB1fZQoaAZHQG4NbKifxtpoB03FAWgIR0CXRjKCQLeAdX2UKGgGR0BmN3x6OYICaAdN6ANoCEdAl0zkRnOB2HV9lChoBkdAYCW35vcafmgHTegDaAhHQJdODe/Ho5h1fZQoaAZHQHDe0kGA09BoB027A2gIR0CXTtZh8YygdX2UKGgGR0Abv9BKL877aAdNNwFoCEdAl1HCiAUcn3V9lChoBkdAcRpyDqW1MWgHTZkBaAhHQJdTibayrxR1fZQoaAZHQFvoocrAgxJoB03oA2gIR0CXVJJwbVBldX2UKGgGR0BsgqlJpWWAaAdNjgJoCEdAl1SuqNp/PXV9lChoBkdAbrC6bvw3HmgHTa0DaAhHQJdYHR5TqB51fZQoaAZHQE8ffP5YYBNoB00sAWgIR0CXWDtdAxBWdX2UKGgGR0BNYu7YkE9uaAdL7GgIR0CXXBNxVAAydX2UKGgGR0Bu49p/PPcBaAdNkgFoCEdAl151hTfixXV9lChoBkdAccOA6+36RGgHTXsBaAhHQJdkk6PsAvN1fZQoaAZHQDToQHzH0btoB01BAWgIR0CXZSBPsRg7dX2UKGgGR0BGPXirDIikaAdNDgFoCEdAl2nib2Dg63V9lChoBkdAa5fPbfxc3WgHTagBaAhHQJdwfj+717J1fZQoaAZHQHHGnx8UmD1oB02bA2gIR0CXdKDp1RtQdX2UKGgGR0BwV1Y0VJtjaAdNcAFoCEdAl3cbhzeXRnV9lChoBkdAWlBDeCTUzGgHTegDaAhHQJeMVQoCuEF1fZQoaAZHQEjK8cMmWt5oB00jAWgIR0CXjn6Rhc7hdX2UKGgGR0Bw5/4mCyyEaAdNCwJoCEdAl5BXRTjvNXV9lChoBkdAb1FGGVRk3GgHTaACaAhHQJeUwH4XXRR1fZQoaAZHQGMOOGbkOqhoB03oA2gIR0CXlrZ+hGpddX2UKGgGR0BoDf++/QBxaAdN6ANoCEdAl5o3TiKiwnV9lChoBkdAYvQWcjJMg2gHTegDaAhHQJea0bxVhkR1fZQoaAZHQGMjGLDQ7cRoB03oA2gIR0CXmyNgBtDVdX2UKGgGR0Bwo1mqYJE6aAdNQwJoCEdAl5tzH0btJHV9lChoBkdAbJ3yeZof0WgHTRYDaAhHQJedgn8baRJ1fZQoaAZHQHB3zCDVYp5oB00yAmgIR0CXn02TgVGkdX2UKGgGR0Bd0a3d9Dx9aAdN6ANoCEdAl6GA7kn1F3V9lChoBkdAbm0y0rsjV2gHTWACaAhHQJemhPFefI11fZQoaAZHQCZ0tI065oZoB00xAWgIR0CXp35q/M4cdX2UKGgGR0BtxDSsr/bTaAdNmwFoCEdAl6jFEJBw/HV9lChoBkdAbCMjVQQ+U2gHTbwBaAhHQJeo1geA/cF1fZQoaAZHQHGYAtBfKIVoB02SAWgIR0CXsQVJ+UhWdX2UKGgGR0BsYIDvE0iyaAdNewFoCEdAl7NPv0AcUHV9lChoBkdAcoxDb8FY+2gHTXgBaAhHQJezb/IbOu91fZQoaAZHQHGuJB5X2dxoB02KAWgIR0CXs6pBHCoCdX2UKGgGR0Bx2rNiYsunaAdNiwJoCEdAl7PSup0fYHV9lChoBkdAchScYIjW1GgHTRwCaAhHQJez4BPsRg91fZQoaAZHQG7jPC2tuDVoB026AWgIR0CXxMOP/7zkdX2UKGgGR0BiMNnZkCmuaAdN6ANoCEdAl8eVq8DjinV9lChoBkdAcKROH31zyWgHTdcBaAhHQJfJSE0zj3p1fZQoaAZHQHGn3FUADJVoB01HAmgIR0CXyX8rqdH2dX2UKGgGR0BxMLR8c+7laAdNDAJoCEdAl8ww9JSR83V9lChoBkdAZPPD9fkWAWgHTegDaAhHQJfNyzzErG11fZQoaAZHQHBgg9q1w5xoB02dAWgIR0CX0L2CuloEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}