--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 225.90 +/- 71.33 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'fff': '/root/.local/share/jupyter/runtime/kernel-679339ac-acc2-4e2c-b7e7-f3d6dda737bb.json' 'exp_name': 'tempname' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 900000 'learning_rate': 0.000205 'num_envs': 6 'num_steps': 384 'anneal_lr': True 'gae': True 'gamma': 0.985 'gae_lambda': 0.94 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.225 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'kaljr/ppo-CartPole-v1' 'batch_size': 2304 'minibatch_size': 576} ```