--- base_model: kaizerBox/retnet-summarization_small tags: - generated_from_trainer datasets: - xsum model-index: - name: retnet-summarization_small results: [] --- # retnet-summarization_small This model is a fine-tuned version of [kaizerBox/retnet-summarization_small](https://huggingface.co/kaizerBox/retnet-summarization_small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 4.1299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.3711 | 1.0 | 4610 | 4.1533 | | 4.3448 | 2.0 | 9220 | 4.1370 | | 4.3247 | 3.0 | 13830 | 4.1299 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0