File size: 1,489 Bytes
eb4eafb
1696782
eb4eafb
 
 
 
 
 
 
 
 
 
 
 
 
 
1696782
eb4eafb
b4a53ef
eb4eafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4a53ef
1696782
 
eb4eafb
 
1696782
eb4eafb
 
 
b4a53ef
eb4eafb
 
 
 
1696782
 
b4a53ef
eb4eafb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
base_model: kaizerBox/retnet-summarization_small
tags:
- generated_from_trainer
datasets:
- xsum
model-index:
- name: retnet-summarization_small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# retnet-summarization_small

This model is a fine-tuned version of [kaizerBox/retnet-summarization_small](https://huggingface.co/kaizerBox/retnet-summarization_small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4075

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.006
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.7737        | 1.0   | 4610 | 4.4075          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1