import torch import random from transformers import GPT2LMHeadModel, GPT2Tokenizer model = GPT2LMHeadModel.from_pretrained("v2/story/medium_2") tokenizer = GPT2Tokenizer.from_pretrained("v2/story/medium_2") model.resize_token_embeddings(len(tokenizer)) device = torch.device("cpu") # test examples #input_text = "[Jane Wilson, Book Restoration Specialist, The British Library, Restoring ancient manuscripts, Archeologist Adventurer, Feminine, Long hair, Beautiful, Adult] <|endoftext|>" #input_text = "[Gina Marquez, Event Coordinator, The Royal Gardens, Organizing large-scale events, Pirate Captain, Creative, Skilled negotiator, Eye patch, Parrot on shoulder]<|endoftext|>" #input_text = "[Ethan Carter, Cybersecurity Expert, Interpol, Solving complex digital crimes, Hacker Vigilante, Masculine, Short beard, Ruggedly handsome, Mature]<|endoftext|>" input_text ="[Ivan Ivanov, Lead Software Engineer, Superhero for Justice, Writing code, fixing issues, solving problems, Masculine, Long Hair, Adult]<|endoftext|>" input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cpu") output = model.generate( input_ids, max_length=400, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, repetition_penalty=2.0, top_k=200, top_p=0.9, #num_beams=5, #temperature=1.2, #0.7 do_sample=True, use_cache=True, output_hidden_states=True, ) print("\n", tokenizer.decode(output[0], skip_special_tokens=False), "\n\n", "Answer took", len(output[0]), "tokens\n")