--- base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer metrics: - accuracy model-index: - name: undersampled-review-clf results: [] datasets: - justina/yelp_boba_reviews --- # undersampled-review-clf This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on [justina/yelp-boba-reviews](https://huggingface.co/datasets/justina/yelp_boba_reviews) dataset. Undersampling techniques were used to optimize the model for predicting Yelp review ratings. It achieves the following results on the evaluation set: - Loss: 0.4412 - F1 Macro: 0.7799 - Aucpr Macro: 0.8286 - Accuracy: 0.8464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | Aucpr Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:| | 0.9348 | 1.22 | 100 | 0.7286 | 0.6132 | 0.6244 | 0.6962 | | 0.7438 | 2.44 | 200 | 0.7857 | 0.6232 | 0.6215 | 0.6735 | | 0.6275 | 3.66 | 300 | 0.8317 | 0.5976 | 0.6092 | 0.6778 | | 0.5561 | 4.88 | 400 | 0.8176 | 0.6200 | 0.6238 | 0.6868 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3