--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-ime results: [] --- # bert-finetuned-ner-ime This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4592 - Precision: 0.6456 - Recall: 0.3813 - F1: 0.4794 - Accuracy: 0.6108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 221 | 2.6044 | 0.6263 | 0.3774 | 0.4710 | 0.6081 | | No log | 2.0 | 442 | 2.5040 | 0.6286 | 0.3848 | 0.4774 | 0.6100 | | 2.7612 | 3.0 | 663 | 2.4592 | 0.6456 | 0.3813 | 0.4794 | 0.6108 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.0