Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 259.72 +/- 18.60
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x3082fbee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x3082fbf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x308300040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x3083000d0>", "_build": "<function ActorCriticPolicy._build at 0x308300160>", "forward": "<function ActorCriticPolicy.forward at 0x3083001f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x308300280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x308300310>", "_predict": "<function ActorCriticPolicy._predict at 0x3083003a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x308300430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x3083004c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x308300550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x3082fcf80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715305687839619000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNhPbzh8pS6BZuWNq9pdDEODxs7nwuytQAAgD8AAIA/Zj4QvZQhOz5Pj6G8JuhlvhTchzwaMES9AAAAAAAAAAAAMAC7HMYlvIiE5LvfltM8viWXvdbtqz0AAIA/AACAP5okpzxxwFu77ru2u2lhmzw+yLa86NCEPQAAgD8AAIA/gKoJvd5Q7j2Tuu28ecR+vvW8Tb2VSNs9AAAAAAAAAAAzw6G69vxmusLFIrjHxZKzE34POq9oPDcAAIA/AACAP7O7jT0JACo/xCCqvcDekr4VxRI9Ztu6vAAAAAAAAAAAZkw1PEPuuj/LUFg9X/OrvdAXLDyIb3E9AAAAAAAAAACglm4+eo1gP/bd6L1HQMy+Bl5GPvbwHb4AAAAAAAAAAM0c/zz2hF267YU/s3z80a/uEZi6jhbLMwAAgD8AAIA/U78JPnehGT9lwi2++x6Rvqgj6brNFVG6AAAAAAAAAAAN9oe+SEc4P3J5Rjyvrba+YyxbvjmTuD0AAAAAAAAAAADXGb3DqTq6UFSLt/FFcrIS78w6YjylNgAAgD8AAIA/miNSvH/VPD8rLJ283LVzvmJaATy7z/a8AAAAAAAAAACzu0K+rlfEPuCUcD7eRne+vhcAvU52kz0AAAAAAAAAAIDahr345bo+BiGKvczCTr5KgJK9vn8APQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAlWNvOyFCMAWyUTRgBjAF0lEdAmDELK7qY7nV9lChoBkdAbCNRIjGDMGgHTREBaAhHQJgxUpUgjhV1fZQoaAZHQHA9C8jAzpJoB004AWgIR0CYMZEOy3TedX2UKGgGR0BuYIy0rsjWaAdNZQFoCEdAmDHiYoiLVHV9lChoBkdAcUH8RL9MsmgHTTwBaAhHQJgyuuieumt1fZQoaAZHQHFOVByCFsZoB00iAWgIR0CYMu2VE/jbdX2UKGgGR0By/63gDRtxaAdNBwFoCEdAmDL73PAwf3V9lChoBkdAcOuHqeK8+WgHTSMBaAhHQJgzQvIwM6R1fZQoaAZHQG8FQxN7BwdoB00zAWgIR0CYM4RMewLWdX2UKGgGR0Bykp+BpYcOaAdNUQFoCEdAmDOw/X5FgHV9lChoBkdAcqwqaPS2IGgHTUUBaAhHQJgzuiO/+Kl1fZQoaAZHQHHe6XjU/fRoB00cAWgIR0CYNCEl3QlbdX2UKGgGR0BuiVtQ9A5aaAdNIwFoCEdAmDTWAG0NSnV9lChoBkdAcpyBJI1+AmgHTSIBaAhHQJg1Ob4Ju2t1fZQoaAZHQHGqgYDTz/ZoB009AWgIR0CYNfYISlFddX2UKGgGR0Br3fZqVQhwaAdNJgFoCEdAmDYPOY6XB3V9lChoBkdAcP3nn+yZ8mgHTTcBaAhHQJg2rq0MPSV1fZQoaAZHQHCHd61LJ0ZoB00tAWgIR0CYNsh2W6bwdX2UKGgGR0BwDk+9rXUZaAdNKAFoCEdAmDcMHbAUL3V9lChoBkdAcNJxBE8aGmgHTWMBaAhHQJg3HcafjCJ1fZQoaAZHQG924Tj/+85oB00jAWgIR0CYOAAY51eTdX2UKGgGR0BuuPsiSq2jaAdNIQFoCEdAmDg+uzQeFXV9lChoBkdAcX8Cqp97W2gHTUEBaAhHQJg4UOQQtjF1fZQoaAZHQHKuYl6Z6UtoB003AWgIR0CYOFFqi48VdX2UKGgGR0BvCGmUGFBZaAdNKwFoCEdAmDifVI7NjnV9lChoBkdAcncs3AEdNmgHTSwBaAhHQJg40IdELIB1fZQoaAZHQHEkFPepGWloB01JAWgIR0CYOTlWfbsXdX2UKGgGR0BvvN+qioKlaAdNNQFoCEdAmDlhkupS8HV9lChoBkdAcLu8tf5ULmgHTRkBaAhHQJg5/N6gM+h1fZQoaAZHQG+zN2TxG2FoB008AWgIR0CYOjQkHD77dX2UKGgGR0BvPUhvBJqZaAdNJQFoCEdAmDr6HO8kEHV9lChoBkdAbo1ozvZyuWgHTTYBaAhHQJg7Mw1zhgp1fZQoaAZHQHJQLSRbKRxoB00qAWgIR0CYO9OpsGgSdX2UKGgGR0BD9HCoCMgmaAdL6WgIR0CYO+h/y5I6dX2UKGgGR0BvKmOS4e90aAdNJwFoCEdAmDwfMOf/WHV9lChoBkdAb/LJnQID5mgHTUcBaAhHQJg8SbRWtEJ1fZQoaAZHQHF/nAVO9FpoB006AWgIR0CYPGNdJJ5FdX2UKGgGR0BR8FEiMYMwaAdNBAFoCEdAmDycN2C/XXV9lChoBkdAcllfNA1NxmgHTRIBaAhHQJg85BSk0rN1fZQoaAZHQHCFS/KyOaRoB00XAWgIR0CYPPj2zv7WdX2UKGgGR0BzAbRPXTVlaAdNJAFoCEdAmD15oXbdrXV9lChoBkdAcJQd2gWadGgHTToBaAhHQJg+C7ROUMZ1fZQoaAZHQFCeGgBcRlJoB0vcaAhHQJg+v8+A3DN1fZQoaAZHQHKTj8xbjcVoB01HAWgIR0CYP7bG3nZCdX2UKGgGR0ByYO1pj+aSaAdNGQFoCEdAmEA/aYeDF3V9lChoBkdAchd/nGKhtmgHTYoBaAhHQJhAUPy08eV1fZQoaAZHQEq5FDv3JxNoB0vRaAhHQJhAt/wy6+Z1fZQoaAZHQHJhL6guh9NoB01tAWgIR0CYQNS00FbFdX2UKGgGR0BwHqD7IkquaAdNugFoCEdAmEVjch1TznV9lChoBkdAcJ94+8oQWmgHTSgBaAhHQJhFgcQyylh1fZQoaAZHQHA0et4iX6ZoB00zAWgIR0CYRlTL4etCdX2UKGgGR0BtNrXQMQVcaAdNQwFoCEdAmEZaIFeOXHV9lChoBkdAb945xR2r4mgHTSgBaAhHQJhGY9q1w5x1fZQoaAZHQHEXKIrOJLxoB00tAWgIR0CYRt7qptJndX2UKGgGR0BxIR/y5I6KaAdNdwFoCEdAmEdu4oZydXV9lChoBkdAcPKTzundf2gHTT0BaAhHQJhHv4Kx9oh1fZQoaAZHQHAeMJ6Y3NtoB02xAWgIR0CYSBCVrylOdX2UKGgGR0Bx+eATZg5SaAdNPQFoCEdAmEhMURFqjHV9lChoBkdAOjcrd30PH2gHS+NoCEdAmEkmahHsknV9lChoBkdAb9moxYaHbmgHTU8BaAhHQJhJTAFgUlB1fZQoaAZHQHHKP9xZMcpoB00rAWgIR0CYSYM9KVY7dX2UKGgGR0BuiGYD1XeWaAdNIgFoCEdAmEnETQE6k3V9lChoBkdAcqdaJAMUh2gHTTYBaAhHQJhKIZEUj9p1fZQoaAZHQHHMtcW0qpdoB00/AWgIR0CYSppztCzDdX2UKGgGR0BxbVuMuOCHaAdNLwFoCEdAmErBaTwDvHV9lChoBkdAcnw0Ltu1nmgHTTwBaAhHQJhK3irDIil1fZQoaAZHQHDzf0NBnjBoB00wAWgIR0CYS24BV+7UdX2UKGgGR0BzgiO801qGaAdNVgFoCEdAmEwdxlxwQ3V9lChoBkdAcHNyJKraNGgHTS0BaAhHQJhMcs052hZ1fZQoaAZHQHDigqy4Wk9oB00tAWgIR0CYTMfeUILPdX2UKGgGR0BxoW4Vh1DCaAdNYgFoCEdAmEzb0J4SpXV9lChoBkdAcqEEofCAMGgHTTUBaAhHQJhNRaFEiMZ1fZQoaAZHQHFkpRbbDdhoB02aAWgIR0CYTUp7kXDWdX2UKGgGR0ByYXzErGzbaAdNMgFoCEdAmE14Mz/IbXV9lChoBkdAcMVMUAT7EmgHTREBaAhHQJhN5z90ihZ1fZQoaAZHQHA/29L6DXhoB00PAWgIR0CYThNGEwnIdX2UKGgGR0BtkbxZuAI6aAdNGQFoCEdAmE5686FM7HV9lChoBkdAcPB3evZAZGgHTVIBaAhHQJhO173PAwh1fZQoaAZHQG4alBY3eepoB00dAWgIR0CYTvDvVmSRdX2UKGgGR0BxB8kgOjIraAdNMgFoCEdAmE/FtGd7OXV9lChoBkdAbyObiIcin2gHTSUBaAhHQJhP1Du0CzV1fZQoaAZHQHJVd9Ujs2NoB00zAWgIR0CYT/FQ2uPndX2UKGgGR0Bxv1/NJOFhaAdNFQFoCEdAmFAjlHSWq3V9lChoBkdAcUChZyMkyGgHTTEBaAhHQJhRQTrVvuR1fZQoaAZHQHFcyx7iQ1doB00qAWgIR0CYUXZqEeySdX2UKGgGR0Bulz06HTJAaAdNGAFoCEdAmFH7Z8KG+XV9lChoBkdActDkqMFUymgHTT0BaAhHQJhSJUHY6GR1fZQoaAZHQGwtHtOVPepoB00nAWgIR0CYUkTHsC1adX2UKGgGR0BxtXS9du50aAdNRQFoCEdAmFJa/mDDj3V9lChoBkdAclbKv3ai9WgHTTIBaAhHQJhSnrmhdt51fZQoaAZHQHDwgb6xgRdoB00kAWgIR0CYUwDMNc4YdX2UKGgGR0ByCD5BTn7paAdNSwFoCEdAmFN779AHFHV9lChoBkdAR/LIHTqjamgHS+BoCEdAmFQFUuL743V9lChoBkdAcA3KRMewLWgHTWABaAhHQJhUnJgb6xh1fZQoaAZHQHDlJIg/1QJoB01NAWgIR0CYVKeHi3ocdX2UKGgGR0Bt7P8n/kvLaAdNSgFoCEdAmFS0pVjqfXV9lChoBkdAbQSbHZK3/mgHTSIBaAhHQJhVArpaA4J1fZQoaAZHQGvuQeV9nbtoB01BAWgIR0CYVVbkfcN6dX2UKGgGR0BwtkL5RCQcaAdNQAFoCEdAmFVemBOHnHV9lChoBkdAcT1ZL7Gec2gHTR8BaAhHQJhWZhTfixV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9Vc2Vycy9qc21pZHQvTGlicmFyeS9QeXRob24vMy45L2xpYi9weXRob24vc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvVXNlcnMvanNtaWR0L0xpYnJhcnkvUHl0aG9uLzMuOS9saWIvcHl0aG9uL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9Vc2Vycy9qc21pZHQvTGlicmFyeS9QeXRob24vMy45L2xpYi9weXRob24vc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvVXNlcnMvanNtaWR0L0xpYnJhcnkvUHl0aG9uLzMuOS9saWIvcHl0aG9uL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "macOS-14.4.1-arm64-arm-64bit Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:49 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T6020", "Python": "3.9.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0", "GPU Enabled": "False", "Numpy": "1.26.2", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82ccf28d5681dd0a73cbd34f13eb00851c1b256e3194e5e0448d5430cc09a4b8
|
3 |
+
size 147569
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x3082fbee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x3082fbf70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x308300040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x3083000d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x308300160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x3083001f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x308300280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x308300310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x3083003a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x308300430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x3083004c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x308300550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x3082fcf80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1715305687839619000,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNhPbzh8pS6BZuWNq9pdDEODxs7nwuytQAAgD8AAIA/Zj4QvZQhOz5Pj6G8JuhlvhTchzwaMES9AAAAAAAAAAAAMAC7HMYlvIiE5LvfltM8viWXvdbtqz0AAIA/AACAP5okpzxxwFu77ru2u2lhmzw+yLa86NCEPQAAgD8AAIA/gKoJvd5Q7j2Tuu28ecR+vvW8Tb2VSNs9AAAAAAAAAAAzw6G69vxmusLFIrjHxZKzE34POq9oPDcAAIA/AACAP7O7jT0JACo/xCCqvcDekr4VxRI9Ztu6vAAAAAAAAAAAZkw1PEPuuj/LUFg9X/OrvdAXLDyIb3E9AAAAAAAAAACglm4+eo1gP/bd6L1HQMy+Bl5GPvbwHb4AAAAAAAAAAM0c/zz2hF267YU/s3z80a/uEZi6jhbLMwAAgD8AAIA/U78JPnehGT9lwi2++x6Rvqgj6brNFVG6AAAAAAAAAAAN9oe+SEc4P3J5Rjyvrba+YyxbvjmTuD0AAAAAAAAAAADXGb3DqTq6UFSLt/FFcrIS78w6YjylNgAAgD8AAIA/miNSvH/VPD8rLJ283LVzvmJaATy7z/a8AAAAAAAAAACzu0K+rlfEPuCUcD7eRne+vhcAvU52kz0AAAAAAAAAAIDahr345bo+BiGKvczCTr5KgJK9vn8APQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAlWNvOyFCMAWyUTRgBjAF0lEdAmDELK7qY7nV9lChoBkdAbCNRIjGDMGgHTREBaAhHQJgxUpUgjhV1fZQoaAZHQHA9C8jAzpJoB004AWgIR0CYMZEOy3TedX2UKGgGR0BuYIy0rsjWaAdNZQFoCEdAmDHiYoiLVHV9lChoBkdAcUH8RL9MsmgHTTwBaAhHQJgyuuieumt1fZQoaAZHQHFOVByCFsZoB00iAWgIR0CYMu2VE/jbdX2UKGgGR0By/63gDRtxaAdNBwFoCEdAmDL73PAwf3V9lChoBkdAcOuHqeK8+WgHTSMBaAhHQJgzQvIwM6R1fZQoaAZHQG8FQxN7BwdoB00zAWgIR0CYM4RMewLWdX2UKGgGR0Bykp+BpYcOaAdNUQFoCEdAmDOw/X5FgHV9lChoBkdAcqwqaPS2IGgHTUUBaAhHQJgzuiO/+Kl1fZQoaAZHQHHe6XjU/fRoB00cAWgIR0CYNCEl3QlbdX2UKGgGR0BuiVtQ9A5aaAdNIwFoCEdAmDTWAG0NSnV9lChoBkdAcpyBJI1+AmgHTSIBaAhHQJg1Ob4Ju2t1fZQoaAZHQHGqgYDTz/ZoB009AWgIR0CYNfYISlFddX2UKGgGR0Br3fZqVQhwaAdNJgFoCEdAmDYPOY6XB3V9lChoBkdAcP3nn+yZ8mgHTTcBaAhHQJg2rq0MPSV1fZQoaAZHQHCHd61LJ0ZoB00tAWgIR0CYNsh2W6bwdX2UKGgGR0BwDk+9rXUZaAdNKAFoCEdAmDcMHbAUL3V9lChoBkdAcNJxBE8aGmgHTWMBaAhHQJg3HcafjCJ1fZQoaAZHQG924Tj/+85oB00jAWgIR0CYOAAY51eTdX2UKGgGR0BuuPsiSq2jaAdNIQFoCEdAmDg+uzQeFXV9lChoBkdAcX8Cqp97W2gHTUEBaAhHQJg4UOQQtjF1fZQoaAZHQHKuYl6Z6UtoB003AWgIR0CYOFFqi48VdX2UKGgGR0BvCGmUGFBZaAdNKwFoCEdAmDifVI7NjnV9lChoBkdAcncs3AEdNmgHTSwBaAhHQJg40IdELIB1fZQoaAZHQHEkFPepGWloB01JAWgIR0CYOTlWfbsXdX2UKGgGR0BvvN+qioKlaAdNNQFoCEdAmDlhkupS8HV9lChoBkdAcLu8tf5ULmgHTRkBaAhHQJg5/N6gM+h1fZQoaAZHQG+zN2TxG2FoB008AWgIR0CYOjQkHD77dX2UKGgGR0BvPUhvBJqZaAdNJQFoCEdAmDr6HO8kEHV9lChoBkdAbo1ozvZyuWgHTTYBaAhHQJg7Mw1zhgp1fZQoaAZHQHJQLSRbKRxoB00qAWgIR0CYO9OpsGgSdX2UKGgGR0BD9HCoCMgmaAdL6WgIR0CYO+h/y5I6dX2UKGgGR0BvKmOS4e90aAdNJwFoCEdAmDwfMOf/WHV9lChoBkdAb/LJnQID5mgHTUcBaAhHQJg8SbRWtEJ1fZQoaAZHQHF/nAVO9FpoB006AWgIR0CYPGNdJJ5FdX2UKGgGR0BR8FEiMYMwaAdNBAFoCEdAmDycN2C/XXV9lChoBkdAcllfNA1NxmgHTRIBaAhHQJg85BSk0rN1fZQoaAZHQHCFS/KyOaRoB00XAWgIR0CYPPj2zv7WdX2UKGgGR0BzAbRPXTVlaAdNJAFoCEdAmD15oXbdrXV9lChoBkdAcJQd2gWadGgHTToBaAhHQJg+C7ROUMZ1fZQoaAZHQFCeGgBcRlJoB0vcaAhHQJg+v8+A3DN1fZQoaAZHQHKTj8xbjcVoB01HAWgIR0CYP7bG3nZCdX2UKGgGR0ByYO1pj+aSaAdNGQFoCEdAmEA/aYeDF3V9lChoBkdAchd/nGKhtmgHTYoBaAhHQJhAUPy08eV1fZQoaAZHQEq5FDv3JxNoB0vRaAhHQJhAt/wy6+Z1fZQoaAZHQHJhL6guh9NoB01tAWgIR0CYQNS00FbFdX2UKGgGR0BwHqD7IkquaAdNugFoCEdAmEVjch1TznV9lChoBkdAcJ94+8oQWmgHTSgBaAhHQJhFgcQyylh1fZQoaAZHQHA0et4iX6ZoB00zAWgIR0CYRlTL4etCdX2UKGgGR0BtNrXQMQVcaAdNQwFoCEdAmEZaIFeOXHV9lChoBkdAb945xR2r4mgHTSgBaAhHQJhGY9q1w5x1fZQoaAZHQHEXKIrOJLxoB00tAWgIR0CYRt7qptJndX2UKGgGR0BxIR/y5I6KaAdNdwFoCEdAmEdu4oZydXV9lChoBkdAcPKTzundf2gHTT0BaAhHQJhHv4Kx9oh1fZQoaAZHQHAeMJ6Y3NtoB02xAWgIR0CYSBCVrylOdX2UKGgGR0Bx+eATZg5SaAdNPQFoCEdAmEhMURFqjHV9lChoBkdAOjcrd30PH2gHS+NoCEdAmEkmahHsknV9lChoBkdAb9moxYaHbmgHTU8BaAhHQJhJTAFgUlB1fZQoaAZHQHHKP9xZMcpoB00rAWgIR0CYSYM9KVY7dX2UKGgGR0BuiGYD1XeWaAdNIgFoCEdAmEnETQE6k3V9lChoBkdAcqdaJAMUh2gHTTYBaAhHQJhKIZEUj9p1fZQoaAZHQHHMtcW0qpdoB00/AWgIR0CYSppztCzDdX2UKGgGR0BxbVuMuOCHaAdNLwFoCEdAmErBaTwDvHV9lChoBkdAcnw0Ltu1nmgHTTwBaAhHQJhK3irDIil1fZQoaAZHQHDzf0NBnjBoB00wAWgIR0CYS24BV+7UdX2UKGgGR0BzgiO801qGaAdNVgFoCEdAmEwdxlxwQ3V9lChoBkdAcHNyJKraNGgHTS0BaAhHQJhMcs052hZ1fZQoaAZHQHDigqy4Wk9oB00tAWgIR0CYTMfeUILPdX2UKGgGR0BxoW4Vh1DCaAdNYgFoCEdAmEzb0J4SpXV9lChoBkdAcqEEofCAMGgHTTUBaAhHQJhNRaFEiMZ1fZQoaAZHQHFkpRbbDdhoB02aAWgIR0CYTUp7kXDWdX2UKGgGR0ByYXzErGzbaAdNMgFoCEdAmE14Mz/IbXV9lChoBkdAcMVMUAT7EmgHTREBaAhHQJhN5z90ihZ1fZQoaAZHQHA/29L6DXhoB00PAWgIR0CYThNGEwnIdX2UKGgGR0BtkbxZuAI6aAdNGQFoCEdAmE5686FM7HV9lChoBkdAcPB3evZAZGgHTVIBaAhHQJhO173PAwh1fZQoaAZHQG4alBY3eepoB00dAWgIR0CYTvDvVmSRdX2UKGgGR0BxB8kgOjIraAdNMgFoCEdAmE/FtGd7OXV9lChoBkdAbyObiIcin2gHTSUBaAhHQJhP1Du0CzV1fZQoaAZHQHJVd9Ujs2NoB00zAWgIR0CYT/FQ2uPndX2UKGgGR0Bxv1/NJOFhaAdNFQFoCEdAmFAjlHSWq3V9lChoBkdAcUChZyMkyGgHTTEBaAhHQJhRQTrVvuR1fZQoaAZHQHFcyx7iQ1doB00qAWgIR0CYUXZqEeySdX2UKGgGR0Bulz06HTJAaAdNGAFoCEdAmFH7Z8KG+XV9lChoBkdActDkqMFUymgHTT0BaAhHQJhSJUHY6GR1fZQoaAZHQGwtHtOVPepoB00nAWgIR0CYUkTHsC1adX2UKGgGR0BxtXS9du50aAdNRQFoCEdAmFJa/mDDj3V9lChoBkdAclbKv3ai9WgHTTIBaAhHQJhSnrmhdt51fZQoaAZHQHDwgb6xgRdoB00kAWgIR0CYUwDMNc4YdX2UKGgGR0ByCD5BTn7paAdNSwFoCEdAmFN779AHFHV9lChoBkdAR/LIHTqjamgHS+BoCEdAmFQFUuL743V9lChoBkdAcA3KRMewLWgHTWABaAhHQJhUnJgb6xh1fZQoaAZHQHDlJIg/1QJoB01NAWgIR0CYVKeHi3ocdX2UKGgGR0Bt7P8n/kvLaAdNSgFoCEdAmFS0pVjqfXV9lChoBkdAbQSbHZK3/mgHTSIBaAhHQJhVArpaA4J1fZQoaAZHQGvuQeV9nbtoB01BAWgIR0CYVVbkfcN6dX2UKGgGR0BwtkL5RCQcaAdNQAFoCEdAmFVemBOHnHV9lChoBkdAcT1ZL7Gec2gHTR8BaAhHQJhWZhTfixV1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 276,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9Vc2Vycy9qc21pZHQvTGlicmFyeS9QeXRob24vMy45L2xpYi9weXRob24vc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvVXNlcnMvanNtaWR0L0xpYnJhcnkvUHl0aG9uLzMuOS9saWIvcHl0aG9uL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVzAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWy9Vc2Vycy9qc21pZHQvTGlicmFyeS9QeXRob24vMy45L2xpYi9weXRob24vc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFsvVXNlcnMvanNtaWR0L0xpYnJhcnkvUHl0aG9uLzMuOS9saWIvcHl0aG9uL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:503f123b833e6c2fc03c0a4cc8f3cb011f7289ff6988d925bfca846181fcc985
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d3955183f2bc6c463e00385b8cffe045bd83739c3d345d01c9bd04db522a270
|
3 |
+
size 43634
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebdad4b9cfe9cd22a3abadb5623bf7bb1f6eb2e408740245eb3f2044b0adc018
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-14.4.1-arm64-arm-64bit Darwin Kernel Version 23.4.0: Fri Mar 15 00:12:49 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T6020
|
2 |
+
- Python: 3.9.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.2
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.28.1
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.7191353985981, "std_reward": 18.603856790284507, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-09T20:04:10.740022"}
|