File size: 2,008 Bytes
49295c4
09a1ee0
d538b2b
09a1ee0
 
d538b2b
 
09a1ee0
 
 
49295c4
09a1ee0
 
 
 
 
 
 
 
cbd5560
 
09a1ee0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce590e7
 
09a1ee0
 
 
 
 
 
 
 
 
 
 
cbd5560
 
 
 
 
 
 
 
 
 
 
09a1ee0
 
 
 
d538b2b
09a1ee0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2_batangueno
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2_batangueno

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5121
- Wer: 0.2514

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6.642954074604246e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.8266        | 2.67  | 500  | 2.8513          | 1.0    |
| 1.587         | 5.35  | 1000 | 0.8559          | 0.5943 |
| 0.5172        | 8.02  | 1500 | 0.5303          | 0.3903 |
| 0.2865        | 10.7  | 2000 | 0.5031          | 0.3716 |
| 0.2002        | 13.37 | 2500 | 0.4735          | 0.2800 |
| 0.1566        | 16.04 | 3000 | 0.4878          | 0.2955 |
| 0.1163        | 18.72 | 3500 | 0.5329          | 0.2889 |
| 0.0948        | 21.39 | 4000 | 0.4727          | 0.2679 |
| 0.0797        | 24.06 | 4500 | 0.4704          | 0.2679 |
| 0.0669        | 26.74 | 5000 | 0.5199          | 0.2580 |
| 0.0579        | 29.41 | 5500 | 0.5121          | 0.2514 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 1.18.3
- Tokenizers 0.14.1