Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,77 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
[More Information Needed]
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
|
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- fr
|
6 |
+
- en
|
7 |
+
datasets:
|
8 |
+
- jpacifico/French-Alpaca-dataset-Instruct-110K
|
9 |
+
tags:
|
10 |
+
- Phi-3
|
11 |
+
- french
|
12 |
+
- Phi-3-mini
|
13 |
---
|
14 |
|
15 |
+
## Model Card for Model ID
|
16 |
|
17 |
+
French-Alpaca based on microsoft/Phi-3-mini-128k-instruct
|
18 |
+
128k is the context length (in tokens)
|
19 |
|
20 |
+
![image/jpeg](https://github.com/jpacifico/French-Alpaca/blob/main/Assets/French-Alpaca_500px.png?raw=true)
|
|
|
|
|
21 |
|
22 |
### Model Description
|
23 |
|
24 |
+
fine-tuned from the original French-Alpaca-dataset entirely generated with OpenAI GPT-3.5-turbo.
|
25 |
+
French-Alpaca is a general model and can itself be finetuned to be specialized for specific use cases.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
The fine-tuning method is inspired from https://crfm.stanford.edu/2023/03/13/alpaca.html
|
28 |
|
29 |
+
Quantized GGUF version : coming soon
|
30 |
|
|
|
31 |
|
32 |
+
### Usage
|
33 |
|
34 |
+
```python
|
35 |
+
def stream_response(instruction, max_new_tokens=500, temperature=0.0, do_sample=False):
|
36 |
+
messages = [
|
37 |
+
{"role": "system", "content": "Vous êtes un assistant numérique serviable. Veuillez fournir des informations sûres, éthiques et précises à l'utilisateur."},
|
38 |
+
{"role": "user", "content": instruction}
|
39 |
+
]
|
40 |
+
|
41 |
+
conversation_history = ""
|
42 |
+
for msg in messages:
|
43 |
+
conversation_history += msg["role"] + ": " + msg["content"] + "\n"
|
44 |
+
|
45 |
+
inputs = tokenizer(conversation_history, return_tensors="pt", padding=True, truncation=True)
|
46 |
+
input_ids = inputs['input_ids'].to("cuda")
|
47 |
|
48 |
+
output_sequences = model.generate(
|
49 |
+
input_ids=input_ids,
|
50 |
+
max_length=input_ids.shape[1] + max_new_tokens,
|
51 |
+
temperature=temperature,
|
52 |
+
do_sample=do_sample,
|
53 |
+
pad_token_id=tokenizer.eos_token_id,
|
54 |
+
eos_token_id=None
|
55 |
+
)
|
56 |
|
57 |
+
generated_text = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
|
58 |
+
last_user_message = "user: " + instruction
|
59 |
+
response_start_index = generated_text.rfind(last_user_message) + len(last_user_message)
|
60 |
+
response = generated_text[response_start_index:].strip()
|
61 |
|
62 |
+
print(response)
|
63 |
|
64 |
+
# Exemple d'utilisation
|
65 |
+
instruction = "propose moi des façons de combiner des bananes et des pitayas pour les consommer."
|
66 |
+
stream_response(instruction)
|
67 |
+
```
|
68 |
|
69 |
+
### Limitations
|
70 |
|
71 |
+
The French-Alpaca model is a quick demonstration that a base tiny model can be easily fine-tuned to specialize in a particular language.
|
72 |
+
It does not have any moderation mechanisms.
|
73 |
|
74 |
+
- **Developed by:** Jonathan Pacifico, 2024
|
75 |
+
- **Model type:** LLM
|
76 |
+
- **Language(s) (NLP):** French
|
77 |
+
- **License:** MIT
|