josmunpen commited on
Commit
c79e04b
1 Parent(s): b2bb218

Añadidos tags

Browse files
Files changed (1) hide show
  1. README.md +26 -19
README.md CHANGED
@@ -11,43 +11,50 @@ datasets:
11
  - larazonpublico
12
  - es
13
  metrics:
14
- - ROUGE-1
15
- - ROUGE-2
16
  ---
17
 
18
  # mt5-small-spanish-summarization
19
 
20
  ## Model description
21
 
22
- You can embed local or remote images using `![](...)`
23
 
24
- ## Intended uses & limitations
25
 
26
- #### How to use
27
 
28
- ```python
29
- # You can include sample code which will be formatted
30
- ```
31
 
32
- #### Limitations and bias
33
 
34
- Provide examples of latent issues and potential remediations.
35
 
36
- ## Training data
 
 
 
 
 
 
 
 
37
 
38
- Describe the data you used to train the model.
39
- If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.
40
-
41
- ## Training procedure
42
-
43
- Preprocessing, hardware used, hyperparameters...
44
 
45
  ## Eval results
 
 
 
 
 
 
 
46
 
47
  ### BibTeX entry and citation info
48
 
49
  ```bibtex
50
- @inproceedings{...,
51
- year={2020}
 
52
  }
53
  ```
 
11
  - larazonpublico
12
  - es
13
  metrics:
14
+ - rouge
 
15
  ---
16
 
17
  # mt5-small-spanish-summarization
18
 
19
  ## Model description
20
 
21
+ This is a mt5-small model finetuned for generating headlines from the body of the news in Spanish.
22
 
23
+ ## Training data
24
 
25
+ The model was trained with 58425 news extracted from the La Raz�n (31477) and P�blico (26948) newspapers. These news belong to the following categories: "Espa�a", "Cultura", "Econom�a", "Igualdad" and "Pol�tica".
26
 
27
+ ## Training procedure
 
 
28
 
29
+ It was trained with Google Colab's GPU Tesla P100-PCIE-16GB for 2 epochs.
30
 
31
+ ### Hyperparameters
32
 
33
+ {evaluation_strategy = "epoch",
34
+ learning_rate = 2e-4,
35
+ per_device_train_batch_size = 6,
36
+ per_device_eval_batch_size = 6,
37
+ weight_decay = 0.01,
38
+ save_total_limi t= 3,
39
+ num_train_epochs = 2,
40
+ predict_with_generate = True,
41
+ fp16 = False}
42
 
 
 
 
 
 
 
43
 
44
  ## Eval results
45
+ | metric | score |
46
+ | --- | ----- |
47
+ | rouge1 | 44.03 |
48
+ | rouge2 | 28.2900 |
49
+ | rougeL | 40.54 |
50
+ | rougeLsum | 40.5587 |
51
+
52
 
53
  ### BibTeX entry and citation info
54
 
55
  ```bibtex
56
+ @inproceedings{ mt5lrpjosmunpen,
57
+ year={2020},
58
+ author = {Jos� Manuel Mu�iz Pe�a},
59
  }
60
  ```