File size: 56,492 Bytes
3519726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 |
"""
This code is in part adapted from AllenAI's Longformer:
https://github.com/allenai/longformer/
and in part adapted from:
https://github.com/huggingface/transformers
Author: Annette Rios ([email protected])
"""
from typing import List, Optional, Tuple, Dict, Union
from torch import nn, Tensor, zeros
import torch
import math
import random
from transformers.models.mbart.modeling_mbart import MBartConfig, MBartForConditionalGeneration, MBartEncoder, MBartLearnedPositionalEmbedding, MBartEncoderLayer, MBartDecoder, MBartModel, _expand_mask
from transformers.modeling_outputs import BaseModelOutput,Seq2SeqModelOutput
from transformers.configuration_utils import PretrainedConfig
from transformers import GPT2Model, GPT2Config, AutoModelForCausalLM,AutoConfig
from transformers.activations import ACT2FN
import torch.nn.functional as F
from transformers.models.roberta.modeling_roberta import RobertaConfig, RobertaModel, RobertaForMaskedLM
from functools import lru_cache
import os.path
class MLongformerEncoderDecoderForConditionalGenerationCustom(MBartForConditionalGeneration):
def __init__(self, config):
super(MBartForConditionalGeneration, self).__init__(config)
self.decoder_config = GPT2Config.from_dict(config.decoder_config)
self.decoder_config.add_cross_attention=True
self.config.eos_token_id = self.decoder_config.eos_token_id
#self.config.bos_token_id = 0
self.model = LongMBartModelCustom(config)
#self.register_buffer("final_logits_bias", torch.zeros((1, self.decoder_config.vocab_size)))
if self.config.from_mbart:
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
else:
self.lm_head = nn.Linear(self.decoder_config.n_embd, self.decoder_config.vocab_size, bias=False)
self.register_buffer("final_logits_bias", torch.zeros((1, self.decoder_config.vocab_size)))
self.model.decoder = GPT2Model(self.decoder_config)
if config.attention_mode == 'n2':
pass # do nothing, use MBartSelfAttention instead
else:
for i, layer in enumerate(self.model.encoder.layers):
layer.self_attn = LongformerSelfAttentionForMBart(config, layer_id=i)
# Initialize weights and apply final processing
self.post_init()
def post_init(self):
super().post_init()
if not self.config.from_mbart:
self.lm_head = nn.Linear(self.decoder_config.n_embd, self.decoder_config.vocab_size, bias=False)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (MBartDecoder)):
module.gradient_checkpointing = value
self.model.decoder._set_gradient_checkpointing(module, value=value)
@classmethod
def from_encoder_decoder_pretrained(
cls,
mbart_pretrained_model_name_or_path: str = None,
decoder_pretrained_model_name_or_path: str = None,
*model_args,
**kwargs
) -> MBartForConditionalGeneration:
config = MLongformerEncoderDecoderConfigCustom.from_pretrained(mbart_pretrained_model_name_or_path)
config.from_mbart = True
config.tie_word_embeddings = False
config.decoder_config = GPT2Config.from_pretrained(decoder_pretrained_model_name_or_path).to_dict()
mbart = super().from_pretrained(mbart_pretrained_model_name_or_path, config=config)
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, add_cross_attention=True)
mbart.model.decoder = decoder.transformer
mbart.lm_head = decoder.lm_head
mbart.register_buffer("final_logits_bias", torch.zeros((1, decoder.config.vocab_size)))
#reinit cross attention layers
mbart.model.enc_to_dec_proj.apply(mbart.model._init_weights)
for layer in mbart.model.decoder.h:
layer.crossattention.c_attn.apply(mbart.model.decoder._init_weights)
del mbart.model.shared
return mbart
class MLongformerEncoderDecoderConfigCustom(MBartConfig):
def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None,
autoregressive: bool = False, attention_mode: str = 'sliding_chunks',
gradient_checkpointing: bool = False, **kwargs):
"""
Args:
attention_window: list of attention window sizes of length = number of layers.
window size = number of attention locations on each side.
For an affective window size of 512, use `attention_window=[256]*num_layers`
which is 256 on each side.
attention_dilation: list of attention dilation of length = number of layers.
attention dilation of `1` means no dilation.
autoregressive: do autoregressive attention or have attention of both sides
attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
"""
super().__init__(**kwargs)
self.from_mbart = False
self.attention_window = attention_window
self.attention_dilation = attention_dilation
self.autoregressive = autoregressive
self.attention_mode = attention_mode
self.gradient_checkpointing = gradient_checkpointing
assert self.attention_mode in ['sliding_chunks', 'n2']
class LongMBartModelCustom(MBartModel):
def __init__(self, config: MBartConfig):
super().__init__(config)
del self.shared
decoder_config = GPT2Config.from_dict(config.decoder_config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
if self.config.from_mbart:
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = LongMBartEncoder(config)
self.enc_to_dec_proj = torch.nn.Linear(config.d_model, decoder_config.n_embd)
self.act = ACT2FN[decoder_config.activation_function]
self.decoder = GPT2Model(decoder_config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.encoder.embed_tokens
def set_input_embeddings(self, value):
self.encoder.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# different to other models, MBart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
#print("input_ids: ", input_ids)
#print("input_embeds: ", inputs_embeds)
#print("decoder_input_ids: ", decoder_input_ids.shape)
#print("attention_mask: ",attention_mask.shape)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_hidden_states = encoder_outputs[0]
#remove uneccessary padding spaces
non_empty_mask = attention_mask.abs().sum(dim=0).bool()
encoder_hidden_states = encoder_hidden_states[:,non_empty_mask]
encoder_attention_mask = attention_mask[:,non_empty_mask]
#to remove global attention tokens (2)
encoder_attention_mask = torch.clamp(encoder_attention_mask, min=0, max=1)
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)
encoder_hidden_states = self.act(encoder_hidden_states)
encoder_hidden_states = torch.nn.Dropout(p=0.1)(encoder_hidden_states)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=decoder_head_mask,
#cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class MLongformerEncoderDecoderForConditionalGeneration(MBartForConditionalGeneration):
def __init__(self, config):
super(MBartForConditionalGeneration, self).__init__(config)
self.model = LongMBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
#print(self)
if config.attention_mode == 'n2':
pass # do nothing, use MBartSelfAttention instead
else:
for i, layer in enumerate(self.model.encoder.layers):
layer.self_attn = LongformerSelfAttentionForMBart(config, layer_id=i)
# Initialize weights and apply final processing
self.post_init()
class MLongformerEncoderDecoderConfig(MBartConfig):
def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None,
autoregressive: bool = False, attention_mode: str = 'sliding_chunks',
gradient_checkpointing: bool = False, **kwargs):
"""
Args:
attention_window: list of attention window sizes of length = number of layers.
window size = number of attention locations on each side.
For an affective window size of 512, use `attention_window=[256]*num_layers`
which is 256 on each side.
attention_dilation: list of attention dilation of length = number of layers.
attention dilation of `1` means no dilation.
autoregressive: do autoregressive attention or have attention of both sides
attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
"""
super().__init__(**kwargs)
self.attention_window = attention_window
self.attention_dilation = attention_dilation
self.autoregressive = autoregressive
self.attention_mode = attention_mode
self.gradient_checkpointing = gradient_checkpointing
assert self.attention_mode in ['sliding_chunks', 'n2']
class LongformerSelfAttentionForMBart(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.embed_dim = config.d_model
self.longformer_self_attn = LongformerSelfAttention(config, layer_id=layer_id)
self.output = nn.Linear(self.embed_dim, self.embed_dim)
def forward(
self,
hidden_states: Tensor, # shape (batch_size, q_len, model_size)
key_value_states: Optional[Tensor] = None, # cross-attention in transformers.models.mbart.modeling_mbart
past_key_value: Optional[Tuple[Tensor]] = None, # only for decoder
attention_mask: Optional[Tensor] = None, # shape (batch_size, k_len) -> changed in transformers.models.modeling_mbart.MBartEncoder and MBartEncoderLayer (new mask uses bool -> global attention positions are lost, need to use the inverted orignal mask
layer_head_mask: Optional[Tensor] = None, # head dropout?
output_attentions: bool = False
) -> Tuple[Tensor, Optional[Tensor]]:
bsz, tgt_len, embed_dim = hidden_states.size()
assert embed_dim == self.embed_dim
assert list(hidden_states.size()) == [bsz, tgt_len, embed_dim]
outputs = self.longformer_self_attn(
hidden_states,
attention_mask=attention_mask * -1, # shape (batch_size, 1, 1, key_len)
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=output_attentions,
)
## new: MBart encoder expects shape (seq_len, bsz, embed_dim), no transpose needed
attn_output = self.output(outputs[0])
# new return in MBartAttention has attn_output, attn_weights_reshaped, past_key_value (only for decoder), need to return 3 values (None for past_key_value)
return (attn_output, outputs[1:] ,None) if len(outputs) == 2 else (attn_output, None, None)
class LongMBartEncoder(MBartEncoder):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`MBartEncoderLayer`].
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_encoder_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = MBartLearnedPositionalEmbedding(
self.max_source_positions,
embed_dim,
)
self.layers = nn.ModuleList([LongMBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`MBartTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
longformer_attention_mask = None
if attention_mask is not None:
# need to return original, inverted mask for longformer attention, else value for global attention (=2 in given mask, will be -1) is lost
longformer_attention_mask = 1 - attention_mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
longformer_attention_mask,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
longformer_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
#print("Encoder output: ",hidden_states.shape)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class LongMBartModel(MBartModel):
def __init__(self, config: MBartConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = LongMBartEncoder(config, self.shared)
self.decoder = MBartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# different to other models, MBart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class LongMBartEncoderLayer(MBartEncoderLayer):
def __init__(self, config: MBartConfig):
super().__init__(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
longformer_attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
longformer_attention_mask (:obj:`torch.FloatTensor`): attention mask of size
`(batch, src_len)` where 0=local, -1=global, 1=padding.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
# if longformer attention instead of mbart self attention: use special mask
if isinstance(self.self_attn, LongformerSelfAttentionForMBart):
attention_mask = longformer_attention_mask
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Longformer(RobertaModel):
def __init__(self, config):
super(Longformer, self).__init__(config)
if config.attention_mode == 'n2':
pass # do nothing, use BertSelfAttention instead
else:
for i, layer in enumerate(self.encoder.layer):
layer.attention.self = LongformerSelfAttention(config, layer_id=i)
class LongformerForMaskedLM(RobertaForMaskedLM):
def __init__(self, config):
super(LongformerForMaskedLM, self).__init__(config)
if config.attention_mode == 'n2':
pass # do nothing, use BertSelfAttention instead
else:
for i, layer in enumerate(self.roberta.encoder.layer):
layer.attention.self = LongformerSelfAttention(config, layer_id=i)
class LongformerConfig(RobertaConfig):
def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None,
autoregressive: bool = False, attention_mode: str = 'sliding_chunks', **kwargs):
"""
Args:
attention_window: list of attention window sizes of length = number of layers.
window size = number of attention locations on each side.
For an affective window size of 512, use `attention_window=[256]*num_layers`
which is 256 on each side.
attention_dilation: list of attention dilation of length = number of layers.
attention dilation of `1` means no dilation.
autoregressive: do autoregressive attention or have attention of both sides
attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
"""
super().__init__(**kwargs)
self.attention_window = attention_window
self.attention_dilation = attention_dilation
self.autoregressive = autoregressive
self.attention_mode = attention_mode
assert self.attention_mode in ['sliding_chunks', 'n2', 'sliding_chunks_no_overlap']
class LongformerSelfAttention(nn.Module):
def __init__(self, config, layer_id):
super(LongformerSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_heads = config.num_attention_heads
self.head_dim = int(config.hidden_size / config.num_attention_heads)
self.embed_dim = config.hidden_size
self.query = nn.Linear(config.hidden_size, self.embed_dim)
self.key = nn.Linear(config.hidden_size, self.embed_dim)
self.value = nn.Linear(config.hidden_size, self.embed_dim)
self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
self.value_global = nn.Linear(config.hidden_size, self.embed_dim)
self.dropout = config.attention_probs_dropout_prob
self.layer_id = layer_id
self.attention_window = config.attention_window[self.layer_id]
self.attention_dilation = config.attention_dilation[self.layer_id]
self.attention_mode = config.attention_mode
self.autoregressive = config.autoregressive
assert self.attention_window > 0
assert self.attention_dilation > 0
assert self.attention_mode in ['sliding_chunks', 'sliding_chunks_no_overlap']
if self.attention_mode in ['sliding_chunks', 'sliding_chunks_no_overlap']:
assert not self.autoregressive # not supported
assert self.attention_dilation == 1 # dilation is not supported
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
):
'''
The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to
-ve: no attention
0: local attention
+ve: global attention
'''
assert encoder_hidden_states is None, "`encoder_hidden_states` is not supported and should be None"
assert encoder_attention_mask is None, "`encoder_attention_mask` is not supported and should be None"
if attention_mask is not None:
key_padding_mask = attention_mask < 0
extra_attention_mask = attention_mask > 0
remove_from_windowed_attention_mask = attention_mask != 0
num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1)
max_num_extra_indices_per_batch = num_extra_indices_per_batch.max()
if max_num_extra_indices_per_batch <= 0:
extra_attention_mask = None
else:
# To support the case of variable number of global attention in the rows of a batch,
# we use the following three selection masks to select global attention embeddings
# in a 3d tensor and pad it to `max_num_extra_indices_per_batch`
# 1) selecting embeddings that correspond to global attention
extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True)
zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch,
device=num_extra_indices_per_batch.device)
# mask indicating which values are actually going to be padding
selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1)
# 2) location of the non-padding values in the selected global attention
selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True)
# 3) location of the padding values in the selected global attention
selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True)
else:
remove_from_windowed_attention_mask = None
extra_attention_mask = None
key_padding_mask = None
hidden_states = hidden_states.transpose(0, 1)
seq_len, bsz, embed_dim = hidden_states.size()
assert embed_dim == self.embed_dim
q = self.query(hidden_states)
k = self.key(hidden_states)
v = self.value(hidden_states)
q /= math.sqrt(self.head_dim)
q = q.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
k = k.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
# attn_weights = (bsz, seq_len, num_heads, window*2+1)
if self.attention_mode == "sliding_chunks":
attn_weights = sliding_chunks_matmul_qk(q, k, self.attention_window, padding_value=0)
elif self.attention_mode == "sliding_chunks_no_overlap":
attn_weights = sliding_chunks_no_overlap_matmul_qk(q, k, self.attention_window, padding_value=0)
else:
raise False
mask_invalid_locations(attn_weights, self.attention_window, self.attention_dilation, False)
if remove_from_windowed_attention_mask is not None:
# This implementation is fast and takes very little memory because num_heads x hidden_size = 1
# from (bsz x seq_len) to (bsz x seq_len x num_heads x hidden_size)
remove_from_windowed_attention_mask = remove_from_windowed_attention_mask.unsqueeze(dim=-1).unsqueeze(dim=-1)
# cast to float/half then replace 1's with -inf
float_mask = remove_from_windowed_attention_mask.type_as(q).masked_fill(remove_from_windowed_attention_mask, -10000.0)
repeat_size = 1 if isinstance(self.attention_dilation, int) else len(self.attention_dilation)
float_mask = float_mask.repeat(1, 1, repeat_size, 1)
ones = float_mask.new_ones(size=float_mask.size()) # tensor of ones
# diagonal mask with zeros everywhere and -inf inplace of padding
if self.attention_mode == "sliding_chunks":
d_mask = sliding_chunks_matmul_qk(ones, float_mask, self.attention_window, padding_value=0)
elif self.attention_mode == "sliding_chunks_no_overlap":
d_mask = sliding_chunks_no_overlap_matmul_qk(ones, float_mask, self.attention_window, padding_value=0)
attn_weights += d_mask
assert list(attn_weights.size())[:3] == [bsz, seq_len, self.num_heads]
assert attn_weights.size(dim=3) in [self.attention_window * 2 + 1, self.attention_window * 3]
# the extra attention
if extra_attention_mask is not None:
selected_k = k.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
selected_k[selection_padding_mask_nonzeros] = k[extra_attention_mask_nonzeros]
# (bsz, seq_len, num_heads, max_num_extra_indices_per_batch)
selected_attn_weights = torch.einsum('blhd,bshd->blhs', (q, selected_k))
selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000
# concat to attn_weights
# (bsz, seq_len, num_heads, extra attention count + 2*window+1)
attn_weights = torch.cat((selected_attn_weights, attn_weights), dim=-1)
attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32) # use fp32 for numerical stability
if key_padding_mask is not None:
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
attn_weights_float = torch.masked_fill(attn_weights_float, key_padding_mask.unsqueeze(-1).unsqueeze(-1), 0.0)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
v = v.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
attn = 0
if extra_attention_mask is not None:
selected_attn_probs = attn_probs.narrow(-1, 0, max_num_extra_indices_per_batch)
selected_v = v.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
selected_v[selection_padding_mask_nonzeros] = v[extra_attention_mask_nonzeros]
# use `matmul` because `einsum` crashes sometimes with fp16
# attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
attn = torch.matmul(selected_attn_probs.transpose(1, 2), selected_v.transpose(1, 2).type_as(selected_attn_probs)).transpose(1, 2)
attn_probs = attn_probs.narrow(-1, max_num_extra_indices_per_batch, attn_probs.size(-1) - max_num_extra_indices_per_batch).contiguous()
if self.attention_mode == "sliding_chunks":
attn += sliding_chunks_matmul_pv(attn_probs, v, self.attention_window)
elif self.attention_mode == "sliding_chunks_no_overlap":
attn += sliding_chunks_no_overlap_matmul_pv(attn_probs, v, self.attention_window)
else:
raise False
attn = attn.type_as(hidden_states)
assert list(attn.size()) == [bsz, seq_len, self.num_heads, self.head_dim]
attn = attn.transpose(0, 1).reshape(seq_len, bsz, embed_dim).contiguous()
# For this case, we'll just recompute the attention for these indices
# and overwrite the attn tensor. TODO: remove the redundant computation
if extra_attention_mask is not None:
selected_hidden_states = hidden_states.new_zeros(max_num_extra_indices_per_batch, bsz, embed_dim)
selected_hidden_states[selection_padding_mask_nonzeros[::-1]] = hidden_states[extra_attention_mask_nonzeros[::-1]]
q = self.query_global(selected_hidden_states)
k = self.key_global(hidden_states)
v = self.value_global(hidden_states)
q /= math.sqrt(self.head_dim)
q = q.contiguous().view(max_num_extra_indices_per_batch, bsz * self.num_heads, self.head_dim).transpose(0, 1) # (bsz*self.num_heads, max_num_extra_indices_per_batch, head_dim)
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) # bsz * self.num_heads, seq_len, head_dim)
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) # bsz * self.num_heads, seq_len, head_dim)
attn_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_weights.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len]
attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len)
attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0
if key_padding_mask is not None:
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
-10000.0,
)
attn_weights = attn_weights.view(bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len)
attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32) # use fp32 for numerical stability
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
selected_attn = torch.bmm(attn_probs, v)
assert list(selected_attn.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, self.head_dim]
selected_attn_4d = selected_attn.view(bsz, self.num_heads, max_num_extra_indices_per_batch, self.head_dim)
nonzero_selected_attn = selected_attn_4d[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]]
attn[extra_attention_mask_nonzeros[::-1]] = nonzero_selected_attn.view(len(selection_padding_mask_nonzeros[0]), -1).type_as(hidden_states)
context_layer = attn.transpose(0, 1) # attn shape: (seq_len, bsz, embed_dim), context_layer shape: (bsz, seq_len, embed_dim)
if output_attentions:
if extra_attention_mask is not None:
# With global attention, return global attention probabilities only
# batch_size x num_heads x max_num_global_attention_tokens x sequence_length
# which is the attention weights from tokens with global attention to all tokens
# It doesn't not return local attention
# In case of variable number of global attantion in the rows of a batch,
# attn_weights are padded with -10000.0 attention scores
attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len)
else:
# without global attention, return local attention probabilities
# batch_size x num_heads x sequence_length x window_size
# which is the attention weights of every token attending to its neighbours
attn_weights = attn_weights.permute(0, 2, 1, 3)
outputs = (context_layer, attn_weights) if output_attentions else (context_layer,)
return outputs
def _skew(x, direction, padding_value):
'''Convert diagonals into columns (or columns into diagonals depending on `direction`'''
x_padded = F.pad(x, direction, value=padding_value)
x_padded = x_padded.view(*x_padded.size()[:-2], x_padded.size(-1), x_padded.size(-2))
return x_padded
def _skew2(x, padding_value):
'''shift every row 1 step to right converting columns into diagonals'''
# X = B x C x M x L
B, C, M, L = x.size()
x = F.pad(x, (0, M + 1), value=padding_value) # B x C x M x (L+M+1)
x = x.view(B, C, -1) # B x C x ML+MM+M
x = x[:, :, :-M] # B x C x ML+MM
x = x.view(B, C, M, M + L) # B x C, M x L+M
x = x[:, :, :, :-1]
return x
def _chunk(x, w):
'''convert into overlapping chunkings. Chunk size = 2w, overlap size = w'''
# non-overlapping chunks of size = 2w
x = x.view(x.size(0), x.size(1) // (w * 2), w * 2, x.size(2))
# use `as_strided` to make the chunks overlap with an overlap size = w
chunk_size = list(x.size())
chunk_size[1] = chunk_size[1] * 2 - 1
chunk_stride = list(x.stride())
chunk_stride[1] = chunk_stride[1] // 2
return x.as_strided(size=chunk_size, stride=chunk_stride)
def sliding_chunks_matmul_qk(q: torch.Tensor, k: torch.Tensor, w: int, padding_value: float):
'''Matrix multiplicatio of query x key tensors using with a sliding window attention pattern.
This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer)
with an overlap of size w'''
bsz, seqlen, num_heads, head_dim = q.size()
assert seqlen % (w * 2) == 0
assert q.size() == k.size()
chunks_count = seqlen // w - 1
# group bsz and num_heads dimensions into one, then chunk seqlen into chunks of size w * 2
q = q.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim)
k = k.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim)
chunk_q = _chunk(q, w)
chunk_k = _chunk(k, w)
# matrix multipication
# bcxd: bsz*num_heads x chunks x 2w x head_dim
# bcyd: bsz*num_heads x chunks x 2w x head_dim
# bcxy: bsz*num_heads x chunks x 2w x 2w
chunk_attn = torch.einsum('bcxd,bcyd->bcxy', (chunk_q, chunk_k)) # multiply
# convert diagonals into columns
diagonal_chunk_attn = _skew(chunk_attn, direction=(0, 0, 0, 1), padding_value=padding_value)
# allocate space for the overall attention matrix where the chunks are compined. The last dimension
# has (w * 2 + 1) columns. The first (w) columns are the w lower triangles (attention from a word to
# w previous words). The following column is attention score from each word to itself, then
# followed by w columns for the upper triangle.
diagonal_attn = diagonal_chunk_attn.new_empty((bsz * num_heads, chunks_count + 1, w, w * 2 + 1))
# copy parts from diagonal_chunk_attn into the compined matrix of attentions
# - copying the main diagonal and the upper triangle
diagonal_attn[:, :-1, :, w:] = diagonal_chunk_attn[:, :, :w, :w + 1]
diagonal_attn[:, -1, :, w:] = diagonal_chunk_attn[:, -1, w:, :w + 1]
# - copying the lower triangle
diagonal_attn[:, 1:, :, :w] = diagonal_chunk_attn[:, :, - (w + 1):-1, w + 1:]
diagonal_attn[:, 0, 1:w, 1:w] = diagonal_chunk_attn[:, 0, :w - 1, 1 - w:]
# separate bsz and num_heads dimensions again
diagonal_attn = diagonal_attn.view(bsz, num_heads, seqlen, 2 * w + 1).transpose(2, 1)
mask_invalid_locations(diagonal_attn, w, 1, False)
return diagonal_attn
def sliding_chunks_matmul_pv(prob: torch.Tensor, v: torch.Tensor, w: int):
'''Same as sliding_chunks_matmul_qk but for prob and value tensors. It is expecting the same output
format from sliding_chunks_matmul_qk'''
bsz, seqlen, num_heads, head_dim = v.size()
assert seqlen % (w * 2) == 0
assert prob.size()[:3] == v.size()[:3]
assert prob.size(3) == 2 * w + 1
chunks_count = seqlen // w - 1
# group bsz and num_heads dimensions into one, then chunk seqlen into chunks of size 2w
chunk_prob = prob.transpose(1, 2).reshape(bsz * num_heads, seqlen // w, w, 2 * w + 1)
# group bsz and num_heads dimensions into one
v = v.transpose(1, 2).reshape(bsz * num_heads, seqlen, head_dim)
# pad seqlen with w at the beginning of the sequence and another w at the end
padded_v = F.pad(v, (0, 0, w, w), value=-1)
# chunk padded_v into chunks of size 3w and an overlap of size w
chunk_v_size = (bsz * num_heads, chunks_count + 1, 3 * w, head_dim)
chunk_v_stride = padded_v.stride()
chunk_v_stride = chunk_v_stride[0], w * chunk_v_stride[1], chunk_v_stride[1], chunk_v_stride[2]
chunk_v = padded_v.as_strided(size=chunk_v_size, stride=chunk_v_stride)
skewed_prob = _skew2(chunk_prob, padding_value=0)
context = torch.einsum('bcwd,bcdh->bcwh', (skewed_prob, chunk_v))
return context.view(bsz, num_heads, seqlen, head_dim).transpose(1, 2)
def pad_to_window_size(input_ids: torch.Tensor, attention_mask: torch.Tensor,
one_sided_window_size: int, pad_token_id: int):
'''A helper function to pad tokens and mask to work with the sliding_chunks implementation of Longformer selfattention.
Input:
input_ids = torch.Tensor(bsz x seqlen): ids of wordpieces
attention_mask = torch.Tensor(bsz x seqlen): attention mask
one_sided_window_size = int: window size on one side of each token
pad_token_id = int: tokenizer.pad_token_id
Returns
(input_ids, attention_mask) padded to length divisible by 2 * one_sided_window_size
'''
w = int(2 * one_sided_window_size)
seqlen = input_ids.size(1)
padding_len = (w - seqlen % w) % w
input_ids = F.pad(input_ids, (0, padding_len), value=pad_token_id)
attention_mask = F.pad(attention_mask, (0, padding_len), value=False) # no attention on the padding tokens
return input_ids, attention_mask
# ========= "sliding_chunks_no_overlap": alternative implemenation of the sliding window attention =========
# This implementation uses non-overlapping chunks (or blocks) of size `w` with number of local attention = 3xw
# To make this implemenation comparable to "sliding_chunks" set w such that
# w_of_sliding_chunks_no_overlap = w_of_sliding_chunks * 2 / 3
# For example,
# w_of_sliding_chunks = 256 (this is one sided. Total attention size = 512)
# w_of_sliding_chunks_no_overlap = 170 (Total attention size = 510)
# Performance:
# - Speed: 30% faster than "sliding_chunks"
# - Memory: 95% of the memory usage of "sliding_chunks"
# The windows are asymmetric where number of attention on each side of a token ranges between w to 2w
# while "sliding_chunks" has a symmetric window around each token.
def sliding_chunks_no_overlap_matmul_qk(q: torch.Tensor, k: torch.Tensor, w: int, padding_value: float):
bsz, seqlen, num_heads, head_dim = q.size()
assert seqlen % w == 0
assert q.size() == k.size()
# chunk seqlen into non-overlapping chunks of size w
chunk_q = q.view(bsz, seqlen // w, w, num_heads, head_dim)
chunk_k = k.view(bsz, seqlen // w, w, num_heads, head_dim)
chunk_k_expanded = torch.stack((
F.pad(chunk_k[:, :-1], (0, 0, 0, 0, 0, 0, 1, 0), value=0.0),
chunk_k,
F.pad(chunk_k[:, 1:], (0, 0, 0, 0, 0, 0, 0, 1), value=0.0),
), dim=-1)
diagonal_attn = torch.einsum('bcxhd,bcyhde->bcxhey', (chunk_q, chunk_k_expanded)) # multiply
return diagonal_attn.reshape(bsz, seqlen, num_heads, 3 * w)
def sliding_chunks_no_overlap_matmul_pv(prob: torch.Tensor, v: torch.Tensor, w: int):
bsz, seqlen, num_heads, head_dim = v.size()
chunk_prob = prob.view(bsz, seqlen // w, w, num_heads, 3, w)
chunk_v = v.view(bsz, seqlen // w, w, num_heads, head_dim)
chunk_v_extended = torch.stack((
F.pad(chunk_v[:, :-1], (0, 0, 0, 0, 0, 0, 1, 0), value=0.0),
chunk_v,
F.pad(chunk_v[:, 1:], (0, 0, 0, 0, 0, 0, 0, 1), value=0.0),
), dim=-1)
context = torch.einsum('bcwhpd,bcdhep->bcwhe', (chunk_prob, chunk_v_extended))
return context.reshape(bsz, seqlen, num_heads, head_dim)
def _get_invalid_locations_mask_fixed_dilation(seq_len: int, w: int, d: int):
diagonals_list = []
for j in range(-d * w, d, d):
diagonal_mask = torch.zeros(seq_len, device='cpu', dtype=torch.uint8)
diagonal_mask[:-j] = 1
diagonals_list.append(diagonal_mask)
return torch.stack(diagonals_list, dim=-1)
@lru_cache()
def _get_invalid_locations_mask(w: int, d: Union[torch.Tensor,int], autoregressive: bool, device: str):
if isinstance(d, int):
affected_seq_len = w * d
mask = _get_invalid_locations_mask_fixed_dilation(affected_seq_len, w, d)
mask = mask[None, :, None, :]
else:
affected_seq_len = w * d.max()
head_masks = []
d_list = d.cpu().numpy().tolist()
for d in d_list:
one_head_mask = _get_invalid_locations_mask_fixed_dilation(affected_seq_len, w, d)
head_masks.append(one_head_mask)
mask = torch.stack(head_masks, dim=-2)
mask = mask[None, :, :, :]
ending_mask = None if autoregressive else mask.flip(dims=(1, 3)).bool().to(device)
return affected_seq_len, mask.bool().to(device), ending_mask
def mask_invalid_locations(input_tensor: torch.Tensor, w: int, d: Union[torch.Tensor, int], autoregressive: bool) -> torch.Tensor:
affected_seq_len, beginning_mask, ending_mask = _get_invalid_locations_mask(w, d, autoregressive, input_tensor.device)
seq_len = input_tensor.size(1)
beginning_input = input_tensor[:, :affected_seq_len, :, :w+1]
beginning_mask = beginning_mask[:, :seq_len].expand(beginning_input.size())
beginning_input.masked_fill_(beginning_mask, -float('inf'))
if not autoregressive:
ending_input = input_tensor[:, -affected_seq_len:, :, -(w+1):]
ending_mask = ending_mask[:, -seq_len:].expand(ending_input.size())
ending_input.masked_fill_(ending_mask, -float('inf'))
|