josephleekl commited on
Commit
3159155
1 Parent(s): 80ba348

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.21 +/- 20.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c693fd6d510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c693fd6d5a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c693fd6d630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c693fd6d6c0>", "_build": "<function ActorCriticPolicy._build at 0x7c693fd6d750>", "forward": "<function ActorCriticPolicy.forward at 0x7c693fd6d7e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c693fd6d870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c693fd6d900>", "_predict": "<function ActorCriticPolicy._predict at 0x7c693fd6d990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c693fd6da20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c693fd6dab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c693fd6db40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c693fd23700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708801561852996021, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAChjz1obto+upbyvc3mf76QiEO81d7jPAAAAAAAAAAAWt+gPddzd7nRa5G5Xmg7s/1RoTrxxKo4AACAPwAAgD/NyIo7hRv8uWA3FrnwyAq2BWa+OwL1gTUAAIA/AACAP2ZyuDxsJ4w+s3nwvTIBjL4eqs+8MnDzvQAAAAAAAAAAZo43vUh7kLoZT8c6ME43tkd5Jbq+2ea5AACAPwAAgD/mRkY9FLaZukO+cba39tmxGP0BO6KfjzUAAIA/AACAPwC+f7wpiF66ukrwuu5SBLaQrl26zjkNOgAAgD8AAIA/AO60vBTIhLp1l187H7NUOB21eDo7ygm6AACAPwAAgD8CiZW+jtH6PuI8qT57d56+qAL9veN5VT4AAAAAAAAAAM2Taj17mqi6XT5DOr6uKbaHo+G5uplfuQAAgD8AAIA/M/a/vBRko7qQG246JM+Ptb3OdzcN8Ii5AACAPwAAgD9m/5C8wxI9O1JfJb1+qyO+LEGTO3OHaz0AAAAAAAAAABrEJr3DQXu67JccuO3lBLP1F4y6ttQ2NwAAgD8AAIA/mrmzuilILLrteIS5mYTfNapvr7sQMZo4AACAPwAAgD9mcmU8wCq1P3MD6z5/RiE90yEcvG93mbwAAAAAAAAAAM0h1jyFo9e58knoOu/vxzXSpWG7VLgHugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGctFMAWBSWMAWyUTegDjAF0lEdAlFGEWIoE0XV9lChoBkdAXzCQ+2VmjGgHTegDaAhHQJRSf6BRQ791fZQoaAZHQGZy9lmOEM9oB03oA2gIR0CUVF2alUIcdX2UKGgGR0BQE5N47ihnaAdL+mgIR0CUVID8cdYGdX2UKGgGR0BjHNIiC8ODaAdN6ANoCEdAlFXijcmBv3V9lChoBkdAYSdP/JeVs2gHTegDaAhHQJRazMMZxaR1fZQoaAZHQGFjLpaA4GVoB03oA2gIR0CUWz5xiobXdX2UKGgGR0BlW/nlnyuqaAdN6ANoCEdAlFxvbj94vHV9lChoBkdAZy8GxD9fkWgHTegDaAhHQJRrT+Kjzqd1fZQoaAZHQGD5i4Bmwq1oB03oA2gIR0CUeAFY+0PZdX2UKGgGR0BlH4EZBLPEaAdN6ANoCEdAlIBZe7cwg3V9lChoBkdAZHF6i0v4/WgHTegDaAhHQJSCEwaisXB1fZQoaAZHQGQfmrCFbmloB03oA2gIR0CUmz7Uoa1kdX2UKGgGR0BkEnGlyimEaAdN6ANoCEdAlJ4TWf9P13V9lChoBkdAZJe8eS0SiGgHTegDaAhHQJShzigkC3h1fZQoaAZHQGFYaWgOBlNoB03oA2gIR0CUop6eoUBXdX2UKGgGR0BjAyFwkxATaAdN6ANoCEdAlKNQO4G2TnV9lChoBkdAXTGCBf8dgmgHTegDaAhHQJSkxUfgaWJ1fZQoaAZHQGNknAqNIbxoB03oA2gIR0CUp51LrX18dX2UKGgGR0BgkzTH80k4aAdN6ANoCEdAlKfEXYUWVXV9lChoBkdAZogprk8zRGgHTegDaAhHQJSpNH5Jsft1fZQoaAZHQGO1FEZzgdhoB03oA2gIR0CUrkE2Hck/dX2UKGgGR0BjpGUMXrMUaAdN6ANoCEdAlK65rYXfqHV9lChoBkdAZnDVbRnezmgHTegDaAhHQJSv+iTMaCN1fZQoaAZHQGRQlu3trsVoB03oA2gIR0CUvuYPXkHVdX2UKGgGR0BjsZPhybQUaAdN6ANoCEdAlMjs3dbgTHV9lChoBkdAYUMgieNDMWgHTegDaAhHQJTSPkjopx51fZQoaAZHQF7+8tf5ULloB03oA2gIR0CU1Hy1uzhQdX2UKGgGR0BlQVic5Ke1aAdN6ANoCEdAlO4s8TzunnV9lChoBkdAaBnEF4cFQmgHTegDaAhHQJTw54nndO91fZQoaAZHQGM1SWzF+/hoB03oA2gIR0CU82wPy08edX2UKGgGR0BgnR39rGipaAdN6ANoCEdAlPQDPGACn3V9lChoBkdAZi5NY8uBc2gHTegDaAhHQJT0gVbiZOV1fZQoaAZHQGDtQk5ZKWdoB03oA2gIR0CU9YGzKLbYdX2UKGgGR0Bh1s8/2TPjaAdN6ANoCEdAlPdMwL3K0XV9lChoBkdAYv9mvnr6cmgHTegDaAhHQJT3btY0VJt1fZQoaAZHQF/NgxJul41oB03oA2gIR0CU+LSBshxHdX2UKGgGR0BcCEcbR4QjaAdN6ANoCEdAlP0HN1QqJHV9lChoBkdAYv+JIDoyK2gHTegDaAhHQJT9arNnoPl1fZQoaAZHQGKQgLy+YdBoB03oA2gIR0CU/oOfukULdX2UKGgGR0BlnauwHJLeaAdN6ANoCEdAlQ5J7ojfN3V9lChoBkdAYaTwx33Yc2gHTegDaAhHQJUXIbQ1JlJ1fZQoaAZHQGFEDeTFERdoB03oA2gIR0CVHq9s7+1jdX2UKGgGR0BhrqtvGZNPaAdN6ANoCEdAlSBTsY2sJnV9lChoBkdAYzzHAh0QsmgHTegDaAhHQJU602YOUdJ1fZQoaAZHQGK+Z/b0voNoB03oA2gIR0CVPVO1v2oOdX2UKGgGR0BfjIP5HmRvaAdN6ANoCEdAlT/RAOavzXV9lChoBkdAYS88La24NWgHTegDaAhHQJVAY7EHdGl1fZQoaAZHQGEmvddmg8NoB03oA2gIR0CVQNtw71ZldX2UKGgGR0BjStMXaakRaAdN6ANoCEdAlUHPeP7vX3V9lChoBkdAZOvtShrWRWgHTegDaAhHQJVDhB4Uvf11fZQoaAZHQGHpXQ2MsH1oB03oA2gIR0CVQ6TtsvZidX2UKGgGR0Bl1HKOktVaaAdN6ANoCEdAlUTNfb9IgHV9lChoBkdAZYySOinHemgHTegDaAhHQJVI0G6f8Mx1fZQoaAZHQGX9HPNVzZJoB03oA2gIR0CVSS2eg+QmdX2UKGgGR0BieFfNRm9QaAdN6ANoCEdAlUo4mG/N7nV9lChoBkdAQ2/icXm/32gHS+poCEdAlUpriMo+fXV9lChoBkdAX5FNj9XLeWgHTegDaAhHQJVW0hTwUg11fZQoaAZHQHCkNpEhJRRoB037AWgIR0CVWE93KSxJdX2UKGgGR0Bir32qT8pDaAdN6ANoCEdAlV9cOskpqnV9lChoBkdAZsFqfOD8L2gHTegDaAhHQJVodlcyFf11fZQoaAZHQGc0SAxzq8loB03oA2gIR0CVak8c+7lJdX2UKGgGR0BloBrULDyfaAdN6ANoCEdAlYJbVz6rNnV9lChoBkdAZBLvb48EFGgHTegDaAhHQJWFABRyfcx1fZQoaAZHQF8jG8274BVoB03oA2gIR0CVh3+fRNRFdX2UKGgGR0BgKh97WuoxaAdN6ANoCEdAlYnBzzVc2XV9lChoBkdAV4NvOyE+PmgHTegDaAhHQJWLwvM8ox51fZQoaAZHQGT6ntfG+9JoB03oA2gIR0CVi+50KZ2IdX2UKGgGR0Bg6EeCCjDbaAdN6ANoCEdAlY1inLq2SnV9lChoBkdAciYArQPZqWgHTaACaAhHQJWPsvXbudB1fZQoaAZHQGRytsFdLQJoB03oA2gIR0CVkknqmj0udX2UKGgGR0Bm7t6mfoRqaAdN6ANoCEdAlZLVFx4pt3V9lChoBkdAZjhteD3/P2gHTegDaAhHQJWUUspXp4d1fZQoaAZHQGJZY+0PYnRoB03oA2gIR0CVlJi0OVgQdX2UKGgGR0AjPcXWOIZZaAdL7GgIR0CVmDBD5TIedX2UKGgGR0BnZATXarWAaAdN6ANoCEdAlaNvMKTjenV9lChoBkdAcxXw7kn1F2gHTa0BaAhHQJWn4lqrR0F1fZQoaAZHQGiZPV3EAHVoB03oA2gIR0CVqmY8Md92dX2UKGgGR0Bx+VjriVB2aAdN6QJoCEdAla3M9fTkQ3V9lChoBkdAZtL2HLzPKWgHTegDaAhHQJWxEvBacI91fZQoaAZHQGPlhZyMkyFoB03oA2gIR0CVsm83Mpw0dX2UKGgGR0Bk7sFGG21EaAdN6ANoCEdAlcxmbLEDQ3V9lChoBkdAZjXczqKP4mgHTegDaAhHQJXRXIkqto11fZQoaAZHQHHBLRa5f+loB033AmgIR0CV0ivQ4S6EdX2UKGgGR0BhzYccU/OdaAdN6ANoCEdAldOadxyXD3V9lChoBkdAYOeKBNEgGWgHTegDaAhHQJXVmdjG1hN1fZQoaAZHQGPkn3Dej21oB03oA2gIR0CV1x6Rhc7hdX2UKGgGR0BpDet+1Bt2aAdN6ANoCEdAldwmUwBYFXV9lChoBkdAY/Gu6mO2iWgHTegDaAhHQJXcnV2A5Jd1fZQoaAZHQGFWuGbkOqhoB03oA2gIR0CV3c1KoQ4CdX2UKGgGR0BnLrB2wFC+aAdN6ANoCEdAleEfhQ3xWnV9lChoBkdAZB0zfJmukmgHTegDaAhHQJXsUy/KyOd1fZQoaAZHQHBPkOEug6FoB03/AmgIR0CV7Nyy2QXAdX2UKGgGR0Bj9q/RE4NraAdN6ANoCEdAlfB59iMHbHV9lChoBkdAYlbtP557gWgHTegDaAhHQJXywLc9GI91fZQoaAZHQGA/yn1nM+xoB03oA2gIR0CV9y9JjDsMdX2UKGgGR0AzfrJbMX7+aAdL4WgIR0CV+jmJWNm2dX2UKGgGR0BkEabMHKOlaAdN6ANoCEdAlfzRLTQVsXV9lChoBkdAccR5SWJJoWgHTTYDaAhHQJX+ZTVDrqt1fZQoaAZHQGNzsbNr0rdoB03oA2gIR0CWAmTP0I1MdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cf265b2d7fdf2eb06a2bf420601abb2122ae20ffdd6593685e20fe6ada50146
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c693fd6d510>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c693fd6d5a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c693fd6d630>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c693fd6d6c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c693fd6d750>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c693fd6d7e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c693fd6d870>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c693fd6d900>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c693fd6d990>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c693fd6da20>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c693fd6dab0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c693fd6db40>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c693fd23700>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1708801561852996021,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAChjz1obto+upbyvc3mf76QiEO81d7jPAAAAAAAAAAAWt+gPddzd7nRa5G5Xmg7s/1RoTrxxKo4AACAPwAAgD/NyIo7hRv8uWA3FrnwyAq2BWa+OwL1gTUAAIA/AACAP2ZyuDxsJ4w+s3nwvTIBjL4eqs+8MnDzvQAAAAAAAAAAZo43vUh7kLoZT8c6ME43tkd5Jbq+2ea5AACAPwAAgD/mRkY9FLaZukO+cba39tmxGP0BO6KfjzUAAIA/AACAPwC+f7wpiF66ukrwuu5SBLaQrl26zjkNOgAAgD8AAIA/AO60vBTIhLp1l187H7NUOB21eDo7ygm6AACAPwAAgD8CiZW+jtH6PuI8qT57d56+qAL9veN5VT4AAAAAAAAAAM2Taj17mqi6XT5DOr6uKbaHo+G5uplfuQAAgD8AAIA/M/a/vBRko7qQG246JM+Ptb3OdzcN8Ii5AACAPwAAgD9m/5C8wxI9O1JfJb1+qyO+LEGTO3OHaz0AAAAAAAAAABrEJr3DQXu67JccuO3lBLP1F4y6ttQ2NwAAgD8AAIA/mrmzuilILLrteIS5mYTfNapvr7sQMZo4AACAPwAAgD9mcmU8wCq1P3MD6z5/RiE90yEcvG93mbwAAAAAAAAAAM0h1jyFo9e58knoOu/vxzXSpWG7VLgHugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGctFMAWBSWMAWyUTegDjAF0lEdAlFGEWIoE0XV9lChoBkdAXzCQ+2VmjGgHTegDaAhHQJRSf6BRQ791fZQoaAZHQGZy9lmOEM9oB03oA2gIR0CUVF2alUIcdX2UKGgGR0BQE5N47ihnaAdL+mgIR0CUVID8cdYGdX2UKGgGR0BjHNIiC8ODaAdN6ANoCEdAlFXijcmBv3V9lChoBkdAYSdP/JeVs2gHTegDaAhHQJRazMMZxaR1fZQoaAZHQGFjLpaA4GVoB03oA2gIR0CUWz5xiobXdX2UKGgGR0BlW/nlnyuqaAdN6ANoCEdAlFxvbj94vHV9lChoBkdAZy8GxD9fkWgHTegDaAhHQJRrT+Kjzqd1fZQoaAZHQGD5i4Bmwq1oB03oA2gIR0CUeAFY+0PZdX2UKGgGR0BlH4EZBLPEaAdN6ANoCEdAlIBZe7cwg3V9lChoBkdAZHF6i0v4/WgHTegDaAhHQJSCEwaisXB1fZQoaAZHQGQfmrCFbmloB03oA2gIR0CUmz7Uoa1kdX2UKGgGR0BkEnGlyimEaAdN6ANoCEdAlJ4TWf9P13V9lChoBkdAZJe8eS0SiGgHTegDaAhHQJShzigkC3h1fZQoaAZHQGFYaWgOBlNoB03oA2gIR0CUop6eoUBXdX2UKGgGR0BjAyFwkxATaAdN6ANoCEdAlKNQO4G2TnV9lChoBkdAXTGCBf8dgmgHTegDaAhHQJSkxUfgaWJ1fZQoaAZHQGNknAqNIbxoB03oA2gIR0CUp51LrX18dX2UKGgGR0BgkzTH80k4aAdN6ANoCEdAlKfEXYUWVXV9lChoBkdAZogprk8zRGgHTegDaAhHQJSpNH5Jsft1fZQoaAZHQGO1FEZzgdhoB03oA2gIR0CUrkE2Hck/dX2UKGgGR0BjpGUMXrMUaAdN6ANoCEdAlK65rYXfqHV9lChoBkdAZnDVbRnezmgHTegDaAhHQJSv+iTMaCN1fZQoaAZHQGRQlu3trsVoB03oA2gIR0CUvuYPXkHVdX2UKGgGR0BjsZPhybQUaAdN6ANoCEdAlMjs3dbgTHV9lChoBkdAYUMgieNDMWgHTegDaAhHQJTSPkjopx51fZQoaAZHQF7+8tf5ULloB03oA2gIR0CU1Hy1uzhQdX2UKGgGR0BlQVic5Ke1aAdN6ANoCEdAlO4s8TzunnV9lChoBkdAaBnEF4cFQmgHTegDaAhHQJTw54nndO91fZQoaAZHQGM1SWzF+/hoB03oA2gIR0CU82wPy08edX2UKGgGR0BgnR39rGipaAdN6ANoCEdAlPQDPGACn3V9lChoBkdAZi5NY8uBc2gHTegDaAhHQJT0gVbiZOV1fZQoaAZHQGDtQk5ZKWdoB03oA2gIR0CU9YGzKLbYdX2UKGgGR0Bh1s8/2TPjaAdN6ANoCEdAlPdMwL3K0XV9lChoBkdAYv9mvnr6cmgHTegDaAhHQJT3btY0VJt1fZQoaAZHQF/NgxJul41oB03oA2gIR0CU+LSBshxHdX2UKGgGR0BcCEcbR4QjaAdN6ANoCEdAlP0HN1QqJHV9lChoBkdAYv+JIDoyK2gHTegDaAhHQJT9arNnoPl1fZQoaAZHQGKQgLy+YdBoB03oA2gIR0CU/oOfukULdX2UKGgGR0BlnauwHJLeaAdN6ANoCEdAlQ5J7ojfN3V9lChoBkdAYaTwx33Yc2gHTegDaAhHQJUXIbQ1JlJ1fZQoaAZHQGFEDeTFERdoB03oA2gIR0CVHq9s7+1jdX2UKGgGR0BhrqtvGZNPaAdN6ANoCEdAlSBTsY2sJnV9lChoBkdAYzzHAh0QsmgHTegDaAhHQJU602YOUdJ1fZQoaAZHQGK+Z/b0voNoB03oA2gIR0CVPVO1v2oOdX2UKGgGR0BfjIP5HmRvaAdN6ANoCEdAlT/RAOavzXV9lChoBkdAYS88La24NWgHTegDaAhHQJVAY7EHdGl1fZQoaAZHQGEmvddmg8NoB03oA2gIR0CVQNtw71ZldX2UKGgGR0BjStMXaakRaAdN6ANoCEdAlUHPeP7vX3V9lChoBkdAZOvtShrWRWgHTegDaAhHQJVDhB4Uvf11fZQoaAZHQGHpXQ2MsH1oB03oA2gIR0CVQ6TtsvZidX2UKGgGR0Bl1HKOktVaaAdN6ANoCEdAlUTNfb9IgHV9lChoBkdAZYySOinHemgHTegDaAhHQJVI0G6f8Mx1fZQoaAZHQGX9HPNVzZJoB03oA2gIR0CVSS2eg+QmdX2UKGgGR0BieFfNRm9QaAdN6ANoCEdAlUo4mG/N7nV9lChoBkdAQ2/icXm/32gHS+poCEdAlUpriMo+fXV9lChoBkdAX5FNj9XLeWgHTegDaAhHQJVW0hTwUg11fZQoaAZHQHCkNpEhJRRoB037AWgIR0CVWE93KSxJdX2UKGgGR0Bir32qT8pDaAdN6ANoCEdAlV9cOskpqnV9lChoBkdAZsFqfOD8L2gHTegDaAhHQJVodlcyFf11fZQoaAZHQGc0SAxzq8loB03oA2gIR0CVak8c+7lJdX2UKGgGR0BloBrULDyfaAdN6ANoCEdAlYJbVz6rNnV9lChoBkdAZBLvb48EFGgHTegDaAhHQJWFABRyfcx1fZQoaAZHQF8jG8274BVoB03oA2gIR0CVh3+fRNRFdX2UKGgGR0BgKh97WuoxaAdN6ANoCEdAlYnBzzVc2XV9lChoBkdAV4NvOyE+PmgHTegDaAhHQJWLwvM8ox51fZQoaAZHQGT6ntfG+9JoB03oA2gIR0CVi+50KZ2IdX2UKGgGR0Bg6EeCCjDbaAdN6ANoCEdAlY1inLq2SnV9lChoBkdAciYArQPZqWgHTaACaAhHQJWPsvXbudB1fZQoaAZHQGRytsFdLQJoB03oA2gIR0CVkknqmj0udX2UKGgGR0Bm7t6mfoRqaAdN6ANoCEdAlZLVFx4pt3V9lChoBkdAZjhteD3/P2gHTegDaAhHQJWUUspXp4d1fZQoaAZHQGJZY+0PYnRoB03oA2gIR0CVlJi0OVgQdX2UKGgGR0AjPcXWOIZZaAdL7GgIR0CVmDBD5TIedX2UKGgGR0BnZATXarWAaAdN6ANoCEdAlaNvMKTjenV9lChoBkdAcxXw7kn1F2gHTa0BaAhHQJWn4lqrR0F1fZQoaAZHQGiZPV3EAHVoB03oA2gIR0CVqmY8Md92dX2UKGgGR0Bx+VjriVB2aAdN6QJoCEdAla3M9fTkQ3V9lChoBkdAZtL2HLzPKWgHTegDaAhHQJWxEvBacI91fZQoaAZHQGPlhZyMkyFoB03oA2gIR0CVsm83Mpw0dX2UKGgGR0Bk7sFGG21EaAdN6ANoCEdAlcxmbLEDQ3V9lChoBkdAZjXczqKP4mgHTegDaAhHQJXRXIkqto11fZQoaAZHQHHBLRa5f+loB033AmgIR0CV0ivQ4S6EdX2UKGgGR0BhzYccU/OdaAdN6ANoCEdAldOadxyXD3V9lChoBkdAYOeKBNEgGWgHTegDaAhHQJXVmdjG1hN1fZQoaAZHQGPkn3Dej21oB03oA2gIR0CV1x6Rhc7hdX2UKGgGR0BpDet+1Bt2aAdN6ANoCEdAldwmUwBYFXV9lChoBkdAY/Gu6mO2iWgHTegDaAhHQJXcnV2A5Jd1fZQoaAZHQGFWuGbkOqhoB03oA2gIR0CV3c1KoQ4CdX2UKGgGR0BnLrB2wFC+aAdN6ANoCEdAleEfhQ3xWnV9lChoBkdAZB0zfJmukmgHTegDaAhHQJXsUy/KyOd1fZQoaAZHQHBPkOEug6FoB03/AmgIR0CV7Nyy2QXAdX2UKGgGR0Bj9q/RE4NraAdN6ANoCEdAlfB59iMHbHV9lChoBkdAYlbtP557gWgHTegDaAhHQJXywLc9GI91fZQoaAZHQGA/yn1nM+xoB03oA2gIR0CV9y9JjDsMdX2UKGgGR0AzfrJbMX7+aAdL4WgIR0CV+jmJWNm2dX2UKGgGR0BkEabMHKOlaAdN6ANoCEdAlfzRLTQVsXV9lChoBkdAccR5SWJJoWgHTTYDaAhHQJX+ZTVDrqt1fZQoaAZHQGNzsbNr0rdoB03oA2gIR0CWAmTP0I1MdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d55f70f2e892794fc3af11d4b9b425564b01953aeb03ce0b3e657b5d2bb5edb8
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f21dfed1bd031bcbc5826f6185e58748ebd7f18031242e6d7653e49bbcb823a
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.20932100000005, "std_reward": 20.823318052607167, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-24T19:56:50.931630"}