--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_keras_callback model-index: - name: manifesto-dutch-binary-relevance results: [] language: - nl pipeline_tag: text-classification --- # manifesto-dutch-binary-relevance This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base). ## Example usage ```python from transformers import pipeline pipe = pipeline("text-classification", model="joris/manifesto-dutch-binary-relevance", trust_remote_code=True) print(pipe("De digitale versie lees je op d66.nl/verkiezingsprogramma")) print(pipe("Duizenden studenten, net afgestudeerden en starters hebben op dit moment geen zicht op een (betaalbare) woning.")) ## [{'label': 'LABEL_1', 'score': 0.9609444737434387}] # is 000 ## [{'label': 'LABEL_0', 'score': 0.9993253946304321}] # some other code ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data | | Precision | Recall | F1-Score | Support | |-----------|-----------|--------|----------|----------| | 0 | 0.98 | 0.99 | 0.99 | 10043 | | 1 | 0.88 | 0.76 | 0.82 | 714 | | Accuracy | | | 0.98 | 10757 | | Macro avg | 0.93 | 0.88 | 0.90 | 10757 | | Weighted avg | 0.98 | 0.98 | 0.98 | 10757 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.34.1 - TensorFlow 2.14.0 - Tokenizers 0.14.1