jordiclive
commited on
Commit
•
9cf7214
1
Parent(s):
f85aec8
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- OpenAssistant/oasst1
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- sft
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
widget:
|
11 |
+
- text: >-
|
12 |
+
<|prompter|>What is a meme, and what's the history behind this
|
13 |
+
word?</s><|assistant|>
|
14 |
+
- text: <|prompter|>What's the Earth total population</s><|assistant|>
|
15 |
+
- text: <|prompter|>Write a story about future of AI development</s><|assistant|>
|
16 |
+
---
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
# LoRA Adapter for Falcon 40B trained on oasst-top1
|
21 |
+
|
22 |
+
This repo contains a low-rank adapter for **Falcon 40B** fit on datasets part of the OpenAssistant project.
|
23 |
+
|
24 |
+
|
25 |
+
This version of the weights was trained with the following hyperparameters:
|
26 |
+
|
27 |
+
- Epochs: 8
|
28 |
+
- Batch size: 128
|
29 |
+
- Max Length: 2048
|
30 |
+
- Learning rate: 1e-4
|
31 |
+
- Lora _r_: 64
|
32 |
+
- Lora Alpha: 16
|
33 |
+
- Lora target modules: ["dense_4h_to_h", "dense", "query_key_value", "dense_h_to_4h"]
|
34 |
+
|
35 |
+
The model was trained with flash attention and gradient checkpointing and deepspeed stage 3 on 8 x A100 80gb
|
36 |
+
|
37 |
+
## Dataset Details
|
38 |
+
- oasst_export:
|
39 |
+
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
|
40 |
+
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
|
41 |
+
val_split: 0.05
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
- **Developed** as part of the OpenAssistant Project
|
46 |
+
- **Model type:** PEFT Adapter for frozen Falcon
|
47 |
+
- **Language:** English
|
48 |
+
|
49 |
+
## Prompting
|
50 |
+
|
51 |
+
Two special tokens are used to mark the beginning of user and assistant turns:
|
52 |
+
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
|
53 |
+
|
54 |
+
Input prompt example:
|
55 |
+
```
|
56 |
+
<|prompter|>What is a meme, and what's the history behind this word?</s><|assistant|>
|
57 |
+
```
|
58 |
+
The input ends with the `<|assistant|>` token to signal that the model should
|
59 |
+
start generating the assistant reply.
|
60 |
+
|
61 |
+
|
62 |
+
# Example Inference Code (Note several embeddings need to be loaded along with the LoRA weights), assumes on GPU and torch.float16:
|
63 |
+
|
64 |
+
```
|
65 |
+
import torch
|
66 |
+
import transformers
|
67 |
+
from huggingface_hub import hf_hub_download
|
68 |
+
from peft import PeftModel
|
69 |
+
from transformers import GenerationConfig
|
70 |
+
|
71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
72 |
+
dtype = torch.bfloat16
|
73 |
+
repo_id = "jordiclive/falcon_lora_40b_ckpt_500_oasst_1"
|
74 |
+
base_model = "tiiuae/falcon-40b"
|
75 |
+
|
76 |
+
# Model Loading
|
77 |
+
def transfer_embeddings(model, embed_path, tokenizer):
|
78 |
+
old_embeddings = model.get_input_embeddings()
|
79 |
+
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
80 |
+
new_embeddings = torch.nn.Embedding(old_num_tokens, old_embedding_dim)
|
81 |
+
new_embeddings.to(old_embeddings.weight.device, dtype=old_embeddings.weight.dtype)
|
82 |
+
model._init_weights(new_embeddings)
|
83 |
+
embed_weights = torch.load(embed_path, map_location=old_embeddings.weight.device)
|
84 |
+
vocab_size = tokenizer.vocab_size
|
85 |
+
new_embeddings.weight.data[:vocab_size, :] = old_embeddings.weight.data[:vocab_size, :]
|
86 |
+
new_embeddings.weight.data[vocab_size : vocab_size + embed_weights.shape[0], :] = embed_weights.weight.data.to(
|
87 |
+
new_embeddings.weight.dtype
|
88 |
+
).to(new_embeddings.weight.device)
|
89 |
+
model.set_input_embeddings(new_embeddings)
|
90 |
+
model.tie_weights()
|
91 |
+
|
92 |
+
|
93 |
+
def load_peft_model(model, peft_model_path, tokenizer):
|
94 |
+
embed_weights = hf_hub_download(peft_model_path, "extra_embeddings.pt")
|
95 |
+
model.resize_token_embeddings(tokenizer.vocab_size + embed_weights.shape[0])
|
96 |
+
model.config.eos_token_id = tokenizer.eos_token_id
|
97 |
+
model.config.bos_token_id = tokenizer.bos_token_id
|
98 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
99 |
+
model = PeftModel.from_pretrained(
|
100 |
+
model,
|
101 |
+
model_id=peft_model_path,
|
102 |
+
torch_dtype=model.dtype,
|
103 |
+
)
|
104 |
+
model.eos_token_id = tokenizer.eos_token_id
|
105 |
+
transfer_embeddings(model, peft_model_path.joinpath("extra_embeddings.pt"), tokenizer)
|
106 |
+
return model
|
107 |
+
|
108 |
+
|
109 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(repo_id)
|
110 |
+
|
111 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
112 |
+
base_model, torch_dtype=dtype, trust_remote_code=True,
|
113 |
+
)
|
114 |
+
model = load_peft_model(model, repo_id, tokenizer)
|
115 |
+
|
116 |
+
|
117 |
+
# device configuration
|
118 |
+
model = model.to(device)
|
119 |
+
|
120 |
+
|
121 |
+
# Choose Generation parameters
|
122 |
+
|
123 |
+
generation_config = GenerationConfig(
|
124 |
+
temperature=0.1,
|
125 |
+
top_p=0.75,
|
126 |
+
top_k=40,
|
127 |
+
num_beams=4,
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
def format_system_prompt(prompt, eos_token="</s>"):
|
132 |
+
return "{}{}{}{}".format("<|prompter|>", prompt, eos_token, "<|assistant|>")
|
133 |
+
|
134 |
+
|
135 |
+
def generate(prompt, generation_config=generation_config, max_new_tokens=2048, device=device):
|
136 |
+
prompt = format_system_prompt(prompt) # OpenAssistant Prompt Format expected
|
137 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
138 |
+
with torch.no_grad():
|
139 |
+
generation_output = model.generate(
|
140 |
+
input_ids=input_ids,
|
141 |
+
generation_config=generation_config,
|
142 |
+
return_dict_in_generate=True,
|
143 |
+
output_scores=True,
|
144 |
+
max_new_tokens=max_new_tokens,
|
145 |
+
eos_token_id=model.eos_token_id,
|
146 |
+
)
|
147 |
+
s = generation_output.sequences[0]
|
148 |
+
output = tokenizer.decode(s)
|
149 |
+
print("Text generated:")
|
150 |
+
print(output)
|
151 |
+
return output
|
152 |
+
|
153 |
+
|
154 |
+
generate("What is a meme, and what's the history behind this word?")
|
155 |
+
generate("What's the Earth total population")
|
156 |
+
generate("Write a story about future of AI development")
|
157 |
+
|
158 |
+
```
|