File size: 3,080 Bytes
4f95dbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
base_model: facebook/bart-large
tags:
- generated_from_trainer
metrics:
- rouge
- wer
model-index:
- name: bart_billsum_abstractive_1024_1000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_billsum_abstractive_1024_1000

This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0789
- Rouge1: 0.6795
- Rouge2: 0.4076
- Rougel: 0.6139
- Rougelsum: 0.6139
- Wer: 0.4803
- Bleurt: -0.0583

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Wer    | Bleurt  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|:-------:|
| No log        | 0.14  | 250  | 1.3122          | 0.6345 | 0.3515 | 0.5637 | 0.5638    | 0.5303 | -0.3533 |
| 2.3005        | 0.27  | 500  | 1.2468          | 0.6452 | 0.3662 | 0.5767 | 0.5767    | 0.5174 | -0.4992 |
| 2.3005        | 0.41  | 750  | 1.1909          | 0.6513 | 0.3745 | 0.5823 | 0.5823    | 0.5094 | -0.4679 |
| 1.3108        | 0.55  | 1000 | 1.1685          | 0.6605 | 0.3827 | 0.5928 | 0.5928    | 0.5037 | -0.1431 |
| 1.3108        | 0.68  | 1250 | 1.1505          | 0.6671 | 0.3894 | 0.5984 | 0.5984    | 0.4996 | -0.0701 |
| 1.2615        | 0.82  | 1500 | 1.1334          | 0.6616 | 0.3883 | 0.5949 | 0.5949    | 0.4953 | -0.3277 |
| 1.2615        | 0.96  | 1750 | 1.1226          | 0.6692 | 0.3948 | 0.6035 | 0.6035    | 0.492  | -0.0701 |
| 1.1939        | 1.09  | 2000 | 1.1148          | 0.6669 | 0.3942 | 0.6007 | 0.6007    | 0.4892 | -0.2128 |
| 1.1939        | 1.23  | 2250 | 1.1110          | 0.6741 | 0.4003 | 0.6072 | 0.6072    | 0.4884 | -0.3492 |
| 1.1268        | 1.36  | 2500 | 1.1111          | 0.6746 | 0.4018 | 0.6093 | 0.6094    | 0.4865 | -0.0701 |
| 1.1268        | 1.5   | 2750 | 1.0927          | 0.6717 | 0.4001 | 0.6054 | 0.6054    | 0.4837 | -0.467  |
| 1.0977        | 1.64  | 3000 | 1.0840          | 0.6756 | 0.4048 | 0.6099 | 0.61      | 0.4814 | -0.2661 |
| 1.0977        | 1.77  | 3250 | 1.0834          | 0.673  | 0.4034 | 0.6077 | 0.6077    | 0.4808 | -0.2082 |
| 1.079         | 1.91  | 3500 | 1.0789          | 0.6795 | 0.4076 | 0.6139 | 0.6139    | 0.4803 | -0.0583 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2