|
import torch |
|
import transformers |
|
import transformers.models.llama.modeling_llama |
|
from einops import rearrange |
|
import random |
|
|
|
|
|
|
|
class ScaledRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
max_position_embeddings = 4096 |
|
|
|
|
|
self.max_seq_len_cached = max_position_embeddings |
|
t = torch.arange( |
|
self.max_seq_len_cached, |
|
device=self.inv_freq.device, |
|
dtype=self.inv_freq.dtype, |
|
) |
|
|
|
self.scale = 1 / 2 |
|
t *= self.scale |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer( |
|
"cos_cached", emb.cos()[None, None, :, :], persistent=False |
|
) |
|
self.register_buffer( |
|
"sin_cached", emb.sin()[None, None, :, :], persistent=False |
|
) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange( |
|
self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype |
|
) |
|
t *= self.scale |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
self.register_buffer( |
|
"cos_cached", emb.cos()[None, None, :, :], persistent=False |
|
) |
|
self.register_buffer( |
|
"sin_cached", emb.sin()[None, None, :, :], persistent=False |
|
) |
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def replace_llama_rope_with_scaled_rope(): |
|
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = ( |
|
ScaledRotaryEmbedding |
|
) |
|
|