--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-atcosim results: [] --- # whisper-large-v3-atcosim This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0573 - Wer: 15.7807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 12500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0031 | 8.33 | 1000 | 0.0372 | 54.8342 | | 0.0005 | 16.67 | 2000 | 0.0415 | 20.1519 | | 0.0024 | 25.0 | 3000 | 0.0392 | 10.2102 | | 0.0 | 33.33 | 4000 | 0.0469 | 18.6609 | | 0.0 | 41.67 | 5000 | 0.0493 | 17.3180 | | 0.0 | 50.0 | 6000 | 0.0511 | 16.8179 | | 0.0 | 58.33 | 7000 | 0.0526 | 16.4753 | | 0.0 | 66.67 | 8000 | 0.0538 | 16.5725 | | 0.0 | 75.0 | 9000 | 0.0550 | 15.9983 | | 0.0 | 83.33 | 10000 | 0.0560 | 15.7205 | | 0.0 | 91.67 | 11000 | 0.0568 | 15.7159 | | 0.0 | 100.0 | 12000 | 0.0573 | 15.7807 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.14.1