File size: 2,244 Bytes
c046d14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-large-v3-atcosim
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-atcosim
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0573
- Wer: 15.7807
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 12500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.0031 | 8.33 | 1000 | 0.0372 | 54.8342 |
| 0.0005 | 16.67 | 2000 | 0.0415 | 20.1519 |
| 0.0024 | 25.0 | 3000 | 0.0392 | 10.2102 |
| 0.0 | 33.33 | 4000 | 0.0469 | 18.6609 |
| 0.0 | 41.67 | 5000 | 0.0493 | 17.3180 |
| 0.0 | 50.0 | 6000 | 0.0511 | 16.8179 |
| 0.0 | 58.33 | 7000 | 0.0526 | 16.4753 |
| 0.0 | 66.67 | 8000 | 0.0538 | 16.5725 |
| 0.0 | 75.0 | 9000 | 0.0550 | 15.9983 |
| 0.0 | 83.33 | 10000 | 0.0560 | 15.7205 |
| 0.0 | 91.67 | 11000 | 0.0568 | 15.7159 |
| 0.0 | 100.0 | 12000 | 0.0573 | 15.7807 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.14.1
|