--- license: mit base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: transformers tags: ["meta", "llama", "voice", "question-answering"] --- # Model Card for Llama-Q4V Llama-Q4V is a quantized and voice-optimized version of Llama-3.1-8B-Instruct, and is the core LLM for Ai Tag, an open source $20 competitor to Humane's Ai Pin. ## Model Details ### Model Description - **Developed, Funded, and Shared by:** Jacob Leuthardt - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation Llama-Q4V was evaluated on HellaSwag, GLUE, and TriviaQA | Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr| |----------------|-------|-----------------|-----:|-----------|---|-----:|---|-----:| | - cola | 1|none | 0|mcc |↑ |0.0409|± |0.0323| |glue |N/A |none | 0|acc |↑ |0.5002|± |0.0019| | | |none | 0|f1 |↑ |0.5789|± |0.0026| | | |none | 0|mcc |↑ |0.0409|± |0.0323| |hellaswag | 1|none | 0|acc |↑ |0.5849|± |0.0049| | | |none | 0|acc_norm |↑ |0.7846|± |0.0041| | - mnli | 1|none | 0|acc |↑ |0.5200|± |0.0050| | - mnli_mismatch| 1|none | 0|acc |↑ |0.5098|± |0.0050| | - mrpc | 1|none | 0|acc |↑ |0.6887|± |0.0230| | | |none | 0|f1 |↑ |0.8113|± |0.0165| | - qnli | 1|none | 0|acc |↑ |0.5032|± |0.0068| | - qqp | 2|none | 0|acc |↑ |0.4816|± |0.0025| | | |none | 0|f1 |↑ |0.5765|± |0.0027| | - rte | 1|none | 0|acc |↑ |0.6679|± |0.0283| | - sst2 | 1|none | 0|acc |↑ |0.8612|± |0.0117| |triviaqa | 3|remove_whitespace| 0|exact_match|↑ |0.4962|± |0.0037| | - wnli | 2|none | 0|acc |↑ |0.6197|± |0.0580| |Groups|Version|Filter|n-shot|Metric| |Value | |Stderr| |------|-------|------|-----:|------|---|-----:|---|-----:| |glue |N/A |none | 0|acc |↑ |0.5002|± |0.0019| | | |none | 0|f1 |↑ |0.5789|± |0.0026| | | |none | 0|mcc |↑ |0.0409|± |0.0323| ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]