File size: 2,333 Bytes
fde241f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.72
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-gtzan
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2556
- Accuracy: 0.72
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2793 | 0.99 | 28 | 2.1814 | 0.28 |
| 1.9466 | 1.98 | 56 | 1.9110 | 0.41 |
| 1.7147 | 2.97 | 84 | 1.7353 | 0.47 |
| 1.5161 | 4.0 | 113 | 1.5839 | 0.53 |
| 1.3164 | 4.99 | 141 | 1.4552 | 0.62 |
| 1.2924 | 5.98 | 169 | 1.4023 | 0.68 |
| 1.1274 | 6.97 | 197 | 1.3962 | 0.65 |
| 1.0276 | 8.0 | 226 | 1.2685 | 0.74 |
| 0.967 | 8.99 | 254 | 1.2464 | 0.72 |
| 0.9227 | 9.91 | 280 | 1.2556 | 0.72 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|