# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py # Commit id: abbc1311731867310635f9edc2a9ec18317c8c48 # Copyright (c) 2022, Tri Dao. # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py import logging import re from collections import OrderedDict from collections.abc import Sequence from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from einops import rearrange from transformers import PretrainedConfig from transformers.modeling_utils import PreTrainedModel from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead from transformers.models.bert.modeling_bert import ( BaseModelOutputWithPoolingAndCrossAttentions, BertForPreTrainingOutput, ) from typing import Optional, Tuple, Union from .xlm_padding import ( index_first_axis, index_first_axis_residual, pad_input, unpad_input, ) from .configuration_xlm_roberta import XLMRobertaFlashConfig from .block import Block from .embedding import XLMRobertaEmbeddings from .mha import MHA from .mlp import FusedMLP, Mlp from .stochastic_depth import StochasticDepth try: from flash_attn.ops.fused_dense import FusedDense except ImportError: FusedDense = None try: from flash_attn.ops.triton.layer_norm import layer_norm_fn except ImportError: layer_norm_fn = None try: from flash_attn.losses.cross_entropy import CrossEntropyLoss except ImportError: CrossEntropyLoss = None logger = logging.getLogger(__name__) def create_mixer_cls(config, cross_attn=False, return_residual=False): use_flash_attn = getattr(config, "use_flash_attn", False) fused_bias_fc = getattr(config, "fused_bias_fc", False) rotary_kwargs = {} if config.position_embedding_type == "rotary": rotary_kwargs["rotary_emb_dim"] = getattr( config, "rotary_emb_dim", config.hidden_size ) rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0) rotary_kwargs["rotary_emb_scale_base"] = getattr( config, "rotary_emb_scale_base", None ) rotary_kwargs["rotary_emb_interleaved"] = getattr( config, "rotary_emb_interleaved", False ) mixer_cls = partial( MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn, dropout=config.attention_probs_dropout_prob, causal=False, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn, return_residual=return_residual, **rotary_kwargs, ) return mixer_cls def create_mlp_cls(config, layer_idx=None, return_residual=False): inner_dim = config.intermediate_size fused_mlp = getattr(config, "fused_mlp", False) if fused_mlp: assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], ( "fused_mlp only " "supports approximate gelu" ) if not fused_mlp: approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) mlp_cls = partial( Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate=approximate), return_residual=return_residual, ) else: if FusedMLP is None: raise ImportError("fused_dense is not installed") mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] mlp_cls = partial( FusedMLP, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual, ) return mlp_cls def create_block(config, layer_idx=None): last_layer_subset = getattr(config, "last_layer_subset", False) cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1 # TD [2022-12-19]: For cross attention (last layer), we actually want to return the # residual x_kv, not residual x. But it's annoying to change the API (and it only affects # one layer) so we just choose not to return residual in this case. return_residual = not cross_attn mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) block = Block( config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=False, resid_dropout1=config.hidden_dropout_prob, resid_dropout2=config.hidden_dropout_prob, fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False), return_residual=return_residual, ) return block # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 def _init_weights(module, initializer_range=0.02): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if module.padding_idx is not None: nn.init.zeros_(module.weight[module.padding_idx]) class XLMRobertaEncoder(nn.Module): def __init__(self, config: XLMRobertaFlashConfig): super().__init__() self.use_flash_attn = getattr(config, "use_flash_attn", False) self.layers = nn.ModuleList( [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)] ) self._grad_checkpointing = False @property def gradient_checkpointing(self): return self._grad_checkpointing @gradient_checkpointing.setter def gradient_checkpointing(self, value): self._grad_checkpointing = value def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): """If subset_mask is not None, we only want output for the subset of the sequence. This means that we only compute the last layer output for these tokens. subset_mask: (batch, seqlen), dtype=torch.bool """ if key_padding_mask is None or not self.use_flash_attn: mixer_kwargs = ( {"key_padding_mask": key_padding_mask.bool()} if key_padding_mask is not None else None ) for layer in self.layers: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if subset_mask is not None: hidden_states = hidden_states[subset_mask] else: batch, seqlen = hidden_states.shape[:2] hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( hidden_states, key_padding_mask ) mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch} if subset_mask is None: for layer in self.layers: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) hidden_states = pad_input(hidden_states, indices, batch, seqlen) else: for layer in self.layers[:-1]: if self._grad_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( layer, hidden_states, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) if key_padding_mask is not None: subset_idx = torch.nonzero( subset_mask[key_padding_mask], as_tuple=False ).flatten() subset_seqlens = (subset_mask & key_padding_mask).sum( dim=-1, dtype=torch.int32 ) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0), ) else: subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) subset_cu_seqlens = F.pad( torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0), ) hidden_states_subset, hidden_states = index_first_axis_residual( hidden_states, subset_idx ) # It's ok to set max_seqlen_q to be much larger mixer_kwargs = { "x_kv": hidden_states, "cu_seqlens": subset_cu_seqlens, "max_seqlen": max_seqlen_in_batch, "cu_seqlens_k": cu_seqlens, "max_seqlen_k": max_seqlen_in_batch, } if self._grad_checkpointing: torch.utils.checkpoint.checkpoint( self.layers[-1], hidden_states_subset, use_reentrant=False, mixer_kwargs=mixer_kwargs, ) else: hidden_states = self.layers[-1]( hidden_states_subset, mixer_kwargs=mixer_kwargs ) return hidden_states class XLMRobertaPooler(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states, pool=True): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if pool else hidden_states pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class XLMRobertaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.dense = linear_cls(config.hidden_size, config.hidden_size) approximate = ( "tanh" if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none" ) self.transform_act_fn = nn.GELU(approximate=approximate) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) if not self.fused_dropout_add_ln: hidden_states = self.layer_norm(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps, ) return hidden_states class XLMRobertaLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() fused_bias_fc = getattr(config, "fused_bias_fc", False) if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed") linear_cls = nn.Linear if not fused_bias_fc else FusedDense self.transform = XLMRobertaPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states class XLMRobertaPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = XLMRobertaLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class XLMRobertaPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = XLMRobertaFlashConfig base_model_prefix = "roberta" supports_gradient_checkpointing = True def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, XLMRobertaEncoder): module.gradient_checkpointing = value class XLMRobertaModel(XLMRobertaPreTrainedModel): def __init__(self, config: XLMRobertaFlashConfig, add_pooling_layer=True): super().__init__(config) self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if config.vocab_size % self.pad_vocab_size_multiple != 0: config.vocab_size += self.pad_vocab_size_multiple - ( config.vocab_size % self.pad_vocab_size_multiple ) self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) if self.fused_dropout_add_ln and layer_norm_fn is None: raise ImportError("Triton is not installed") assert config.hidden_act in [ "gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh", ] self.embeddings = XLMRobertaEmbeddings( config.hidden_size, config.vocab_size, config.max_position_embeddings, config.type_vocab_size, padding_idx=config.pad_token_id, ) self.emb_drop = nn.Dropout(config.hidden_dropout_prob) self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.encoder = XLMRobertaEncoder(config) self.pooler = XLMRobertaPooler(config) if add_pooling_layer else None self.apply(partial(_init_weights, initializer_range=config.initializer_range)) def forward( self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None, masked_tokens_mask=None, return_dict=None, **kwargs, ): """If masked_tokens_mask is not None (i.e. last_layer_subset == True in XLMForPreTraining), we only want the output for the masked tokens. This means that we only compute the last layer output for these tokens. masked_tokens_mask: (batch, seqlen), dtype=torch.bool """ if kwargs: for key, value in kwargs.items(): if value is not None: logger.warning( "Flash attention implementation does not support kwargs: %s", key, ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) hidden_states = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids ) # TD [2022-12:18]: Don't need to force residual in fp32 # BERT puts embedding LayerNorm before embedding dropout. if not self.fused_dropout_add_ln: hidden_states = self.emb_ln(hidden_states) else: hidden_states = layer_norm_fn( hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps ) hidden_states = self.emb_drop(hidden_states) if masked_tokens_mask is not None: batch_size, seqlen = input_ids.shape[:2] # We also need the first column for the CLS token first_col_mask = torch.zeros( batch_size, seqlen, dtype=torch.bool, device=input_ids.device ) first_col_mask[:, 0] = True subset_mask = masked_tokens_mask | first_col_mask else: subset_mask = None sequence_output = self.encoder( hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask ) if masked_tokens_mask is None: pooled_output = ( self.pooler(sequence_output) if self.pooler is not None else None ) else: # TD [2022-03-01]: the indexing here is very tricky. if attention_mask is not None: subset_idx = subset_mask[attention_mask] pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] sequence_output = sequence_output[ masked_tokens_mask[attention_mask][subset_idx] ] else: pool_input = sequence_output[first_col_mask[subset_mask]] sequence_output = sequence_output[masked_tokens_mask[subset_mask]] pooled_output = ( self.pooler(pool_input, pool=False) if self.pooler is not None else None ) if not return_dict: return sequence_output, pooled_output return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, ) class XLMRobertaForMaskedLM(XLMRobertaPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.lm_head = XLMRobertaLMHead(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.roberta.embeddings.word_embeddings def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(prediction_scores.device) loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct( prediction_scores.view(-1, self.config.vocab_size), labels.view(-1) ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ( ((masked_lm_loss,) + output) if masked_lm_loss is not None else output ) return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # class XLMRobertaForPreTraining(XLMRobertaPreTrainedModel): # def __init__(self, config: XLMRobertaFlashConfig): # super().__init__(config) # # If dense_seq_output, we only need to pass the hidden states for the masked out tokens # # (around 15%) to the classifier heads. # self.dense_seq_output = getattr(config, "dense_seq_output", False) # # If last_layer_subset, we only need the compute the last layer for a subset of tokens # # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). # self.last_layer_subset = getattr(config, "last_layer_subset", False) # if self.last_layer_subset: # assert self.dense_seq_output, "last_layer_subset requires dense_seq_output" # use_xentropy = getattr(config, "use_xentropy", False) # if use_xentropy and CrossEntropyLoss is None: # raise ImportError("xentropy_cuda is not installed") # loss_cls = ( # nn.CrossEntropyLoss # if not use_xentropy # else partial(CrossEntropyLoss, inplace_backward=True) # ) # # self.xlm = XLMRobertaModel(config) # self.cls = XLMRobertaPreTrainingHeads(config) # self.mlm_loss = loss_cls(ignore_index=0) # self.nsp_loss = loss_cls(ignore_index=-1) # # # Initialize weights and apply final processing # self.apply(partial(_init_weights, initializer_range=config.initializer_range)) # self.tie_weights() # # def tie_weights(self): # self.cls.predictions.decoder.weight = self.xlm.embeddings.word_embeddings.weight # # def forward( # self, # input_ids, # position_ids=None, # token_type_ids=None, # attention_mask=None, # labels=None, # next_sentence_label=None, # ): # """ # If labels are provided, they must be 0 for masked out tokens (as specified in the attention # mask). # Outputs: # if `labels` and `next_sentence_label` are not `None`: # Outputs the total_loss which is the sum of the masked language modeling loss and the next # sentence classification loss. # if `labels` or `next_sentence_label` is `None`: # Outputs a tuple comprising # - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and # - the next sentence classification logits of shape [batch_size, 2]. # # """ # masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None # outputs = self.xlm( # input_ids, # position_ids=position_ids, # token_type_ids=token_type_ids, # attention_mask=attention_mask.bool() if attention_mask is not None else None, # masked_tokens_mask=masked_tokens_mask, # ) # sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output # if self.dense_seq_output and labels is not None: # masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() # if not self.last_layer_subset: # sequence_output = index_first_axis( # rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx # ) # prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) # # total_loss = None # if labels is not None and next_sentence_label is not None: # if ( # self.dense_seq_output and labels is not None # ): # prediction_scores are already flattened # masked_lm_loss = self.mlm_loss( # prediction_scores, labels.flatten()[masked_token_idx] # ) # else: # masked_lm_loss = self.mlm_loss( # rearrange(prediction_scores, "... v -> (...) v"), # rearrange(labels, "... -> (...)"), # ) # next_sentence_loss = self.nsp_loss( # rearrange(seq_relationship_score, "... t -> (...) t"), # rearrange(next_sentence_label, "... -> (...)"), # ) # total_loss = masked_lm_loss.float() + next_sentence_loss.float() # # return BertForPreTrainingOutput( # loss=total_loss, # prediction_logits=prediction_scores, # seq_relationship_logits=seq_relationship_score, # ) def remap_state_dict(state_dict, config: PretrainedConfig): """ Map the state_dict of a Huggingface BERT model to be flash_attn compatible. """ # LayerNorm def key_mapping_ln_gamma_beta(key): key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) return key state_dict = OrderedDict( (key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items() ) # Layers def key_mapping_layers(key): return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # LayerNorm def key_mapping_ln(key): key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key) key = re.sub( r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", r"bert.encoder.layers.\1.norm1.\2", key, ) key = re.sub( r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)", r"bert.encoder.layers.\1.norm2.\2", key, ) key = re.sub( r"^cls.predictions.transform.LayerNorm.(weight|bias)", r"cls.predictions.transform.layer_norm.\1", key, ) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub( r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)", r"bert.encoder.layers.\1.mlp.fc1.\2", key, ) key = re.sub( r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)", r"bert.encoder.layers.\1.mlp.fc2.\2", key, ) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention last_layer_subset = getattr(config, "last_layer_subset", False) for d in range(config.num_hidden_layers): Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight") Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight") Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight") bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias") bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias") bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias") if not (last_layer_subset and d == config.num_hidden_layers - 1): state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat( [bq, bk, bv], dim=0 ) else: state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat( [Wk, Wv], dim=0 ) state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat( [bk, bv], dim=0 ) def key_mapping_attn(key): return re.sub( r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)", r"bert.encoder.layers.\1.mixer.out_proj.\2", key, ) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) def key_mapping_decoder_bias(key): return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) state_dict = OrderedDict( (key_mapping_decoder_bias(k), v) for k, v in state_dict.items() ) # Word embedding pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] state_dict["bert.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) ) decoder_weight = state_dict["cls.predictions.decoder.weight"] state_dict["cls.predictions.decoder.weight"] = F.pad( decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) ) # If the vocab was padded, we want to set the decoder bias for those padded indices to be # strongly negative (i.e. the decoder shouldn't predict those indices). # TD [2022-05-09]: I don't think it affects the MLPerf training. decoder_bias = state_dict["cls.predictions.decoder.bias"] state_dict["cls.predictions.decoder.bias"] = F.pad( decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 ) return state_dict def inv_remap_state_dict(state_dict, config: PretrainedConfig): """ Map the state_dict of a flash_attn model to be Huggingface BERT compatible. This function is meant to be the inverse of remap_state_dict. """ # Word embedding pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] decoder_weight = state_dict["cls.predictions.decoder.weight"] decoder_bias = state_dict["cls.predictions.decoder.bias"] # unpad embeddings state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[ : config.orig_vocab_size, : ] state_dict["cls.predictions.decoder.weight"] = decoder_weight[ : config.orig_vocab_size, : ] state_dict["cls.predictions.decoder.bias"] = decoder_bias[ : config.orig_vocab_size ] for d in range(config.num_hidden_layers): last_layer_subset = getattr(config, "last_layer_subset", False) if not last_layer_subset or d != (config.num_hidden_layers - 1): Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight") Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias") state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = ( Wqkv_weights[: Wqkv_weights.shape[0] // 3, :] ) state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = ( Wqkv_weights[ Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, : ] ) state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = ( Wqkv_weights[2 * Wqkv_weights.shape[0] // 3 :, :] ) state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = ( Wqkv_biases[: Wqkv_biases.shape[0] // 3] ) state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = ( Wqkv_biases[Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3] ) state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = ( Wqkv_biases[2 * Wqkv_biases.shape[0] // 3 :] ) else: Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight") Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight") Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias") Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias") state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = ( Wq_weight ) state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = ( Wkv_weights[: Wkv_weights.shape[0] // 2, :] ) state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = ( Wkv_weights[Wkv_weights.shape[0] // 2 :, :] ) state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[ : Wkv_biases.shape[0] // 2 ] state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = ( Wkv_biases[Wkv_biases.shape[0] // 2 :] ) def inv_key_mapping_ln(key): key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key) key = re.sub( r"bert.encoder.layers.(\d+).norm1.(weight|bias)", r"bert.encoder.layers.\1.attention.output.LayerNorm.\2", key, ) key = re.sub( r"bert.encoder.layers.(\d+).norm2.(weight|bias)", r"bert.encoder.layers.\1.output.LayerNorm.\2", key, ) key = re.sub( r"cls.predictions.transform.layer_norm.(weight|bias)", r"cls.predictions.transform.LayerNorm.\1", key, ) return key def inv_key_mapping_ln_gamma_beta(key): key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key) key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key) return key def inv_key_mapping_layers(key): return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key) def inv_key_mapping_mlp(key): key = re.sub( r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)", r"bert.encoder.layer.\1.intermediate.dense.\2", key, ) key = re.sub( r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)", r"bert.encoder.layer.\1.output.dense.\2", key, ) return key def inv_key_mapping_attn(key): return re.sub( r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)", r"bert.encoder.layer.\1.attention.output.dense.\2", key, ) def inv_key_mapping_decoder_bias(key): return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key) state_dict = OrderedDict( (inv_key_mapping_ln(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_layers(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_mlp(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_attn(key), value) for key, value in state_dict.items() ) state_dict = OrderedDict( (inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items() ) return state_dict # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta class XLMRobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = XLMRobertaModel(config, add_pooling_layer=False) self.classifier = XLMRobertaClassificationHead(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and ( labels.dtype == torch.long or labels.dtype == torch.int ): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )