import re from collections import OrderedDict from transformers import PretrainedConfig from transformers import XLMRobertaForMaskedLM, XLMRobertaForSequenceClassification from .configuration_xlm_roberta import XLMRobertaFlashConfig as BertConfig from .modeling_xlm_roberta import XLMRobertaForMaskedLM as FlashXLMRobertaForMaskedLM from .modeling_xlm_roberta import XLMRobertaForSequenceClassification as FlashXLMRobertaForSequenceClassification import torch import click ## inspired by https://github.com/Dao-AILab/flash-attention/blob/85881f547fd1053a7b4a2c3faad6690cca969279/flash_attn/models/bert.py def remap_state_dict(state_dict, config: PretrainedConfig): """ Map the state_dict of a Huggingface BERT model to be flash_attn compatible. """ # LayerNorm def key_mapping_ln_gamma_beta(key): key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) return key state_dict = OrderedDict( (key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items() ) # Layers def key_mapping_layers(key): return re.sub(r"^roberta.encoder.layer.", "roberta.encoder.layers.", key) state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) # LayerNorm def key_mapping_ln(key): key = re.sub(r"^roberta.embeddings.LayerNorm.", "roberta.emb_ln.", key) key = re.sub( r"^roberta.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", r"roberta.encoder.layers.\1.norm1.\2", key, ) key = re.sub( r"^roberta.encoder.layers.(\d+).output.LayerNorm.(weight|bias)", r"roberta.encoder.layers.\1.norm2.\2", key, ) key = re.sub( r"^cls.predictions.transform.LayerNorm.(weight|bias)", r"cls.predictions.transform.layer_norm.\1", key, ) return key state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) # MLP def key_mapping_mlp(key): key = re.sub( r"^roberta.encoder.layers.(\d+).intermediate.dense.(weight|bias)", r"roberta.encoder.layers.\1.mlp.fc1.\2", key, ) key = re.sub( r"^roberta.encoder.layers.(\d+).output.dense.(weight|bias)", r"roberta.encoder.layers.\1.mlp.fc2.\2", key, ) return key state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) # Attention last_layer_subset = getattr(config, "last_layer_subset", False) for d in range(config.num_hidden_layers): Wq = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.query.weight") Wk = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.key.weight") Wv = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.value.weight") bq = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.query.bias") bk = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.key.bias") bv = state_dict.pop(f"roberta.encoder.layers.{d}.attention.self.value.bias") if not (last_layer_subset and d == config.num_hidden_layers - 1): state_dict[f"roberta.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat( [Wq, Wk, Wv], dim=0 ) state_dict[f"roberta.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat( [bq, bk, bv], dim=0 ) else: state_dict[f"roberta.encoder.layers.{d}.mixer.Wq.weight"] = Wq state_dict[f"roberta.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat( [Wk, Wv], dim=0 ) state_dict[f"roberta.encoder.layers.{d}.mixer.Wq.bias"] = bq state_dict[f"roberta.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat( [bk, bv], dim=0 ) def key_mapping_attn(key): return re.sub( r"^roberta.encoder.layers.(\d+).attention.output.dense.(weight|bias)", r"roberta.encoder.layers.\1.mixer.out_proj.\2", key, ) state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) def key_mapping_decoder_bias(key): return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) state_dict = OrderedDict( (key_mapping_decoder_bias(k), v) for k, v in state_dict.items() ) # Word embedding pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) if pad_vocab_size_multiple > 1: word_embeddings = state_dict["roberta.embeddings.word_embeddings.weight"] state_dict["roberta.embeddings.word_embeddings.weight"] = F.pad( word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) ) decoder_weight = state_dict["cls.predictions.decoder.weight"] state_dict["cls.predictions.decoder.weight"] = F.pad( decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) ) # If the vocab was padded, we want to set the decoder bias for those padded indices to be # strongly negative (i.e. the decoder shouldn't predict those indices). # TD [2022-05-09]: I don't think it affects the MLPerf training. decoder_bias = state_dict["cls.predictions.decoder.bias"] state_dict["cls.predictions.decoder.bias"] = F.pad( decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 ) return state_dict @click.command() @click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name') @click.option('--revision', default='main', help='revision') @click.option('--task', default='masked_lm', help='task') @click.option('--output', default='converted_roberta_weights.bin', help='model name') def main(model_name, revision, task, output): if task == 'masked_lm': roberta_model = XLMRobertaForMaskedLM.from_pretrained(model_name, revision=revision) elif task == 'sequence_classification': roberta_model = XLMRobertaForSequenceClassification.from_pretrained(model_name, revision=revision,num_labels=1) config = BertConfig.from_dict(roberta_model.config.to_dict()) state_dict = roberta_model.state_dict() new_state_dict = remap_state_dict(state_dict, config) if task == 'masked_lm': flash_model = FlashXLMRobertaForMaskedLM(config) elif task == 'sequence_classification': flash_model = FlashXLMRobertaForSequenceClassification(config) for k, v in flash_model.state_dict().items(): if k not in new_state_dict: print(f'Use old weights from {k}') new_state_dict[k] = v flash_model.load_state_dict(new_state_dict) torch.save(new_state_dict, output) if __name__ == '__main__': main()