moontidef
commited on
Commit
•
9c63ce0
1
Parent(s):
807ba34
feat: add support for SequenceClassification
Browse files- config.json +2 -1
- modeling_xlm_roberta.py +149 -34
config.json
CHANGED
@@ -3,7 +3,8 @@
|
|
3 |
"AutoConfig": "configuration_xlm_roberta.XLMRobertaFlashConfig",
|
4 |
"AutoModel": "modeling_xlm_roberta.XLMRobertaModel",
|
5 |
"AutoModelForPreTraining": "modeling_xlm_roberta.XLMRobertaForPreTraining",
|
6 |
-
"AutoModelForMaskedLM": "modeling_xlm_roberta.XLMRobertaForMaskedLM"
|
|
|
7 |
},
|
8 |
"attention_probs_dropout_prob": 0.1,
|
9 |
"bos_token_id": 0,
|
|
|
3 |
"AutoConfig": "configuration_xlm_roberta.XLMRobertaFlashConfig",
|
4 |
"AutoModel": "modeling_xlm_roberta.XLMRobertaModel",
|
5 |
"AutoModelForPreTraining": "modeling_xlm_roberta.XLMRobertaForPreTraining",
|
6 |
+
"AutoModelForMaskedLM": "modeling_xlm_roberta.XLMRobertaForMaskedLM",
|
7 |
+
"AutoModelForSequenceClassification":"modeling_xlm_roberta.XLMRobertaForSequenceClassification"
|
8 |
},
|
9 |
"attention_probs_dropout_prob": 0.1,
|
10 |
"bos_token_id": 0,
|
modeling_xlm_roberta.py
CHANGED
@@ -18,10 +18,11 @@ import torch
|
|
18 |
import torch.nn as nn
|
19 |
import torch.nn.functional as F
|
20 |
import torch.utils.checkpoint
|
|
|
21 |
from einops import rearrange
|
22 |
from transformers import PretrainedConfig
|
23 |
from transformers.modeling_utils import PreTrainedModel
|
24 |
-
from transformers.modeling_outputs import MaskedLMOutput
|
25 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
26 |
|
27 |
from transformers.models.bert.modeling_bert import (
|
@@ -429,7 +430,7 @@ class XLMRobertaModel(XLMRobertaPreTrainedModel):
|
|
429 |
for key, value in kwargs.items():
|
430 |
if value is not None:
|
431 |
logger.warning(
|
432 |
-
|
433 |
key,
|
434 |
)
|
435 |
|
@@ -834,47 +835,47 @@ def inv_remap_state_dict(state_dict, config: PretrainedConfig):
|
|
834 |
if not last_layer_subset or d != (config.num_hidden_layers - 1):
|
835 |
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
|
836 |
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
|
837 |
-
state_dict[
|
838 |
-
|
839 |
-
|
840 |
-
state_dict[
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
state_dict[
|
846 |
-
|
847 |
-
|
848 |
-
state_dict[
|
849 |
-
|
850 |
-
|
851 |
-
state_dict[
|
852 |
-
|
853 |
-
|
854 |
-
state_dict[
|
855 |
-
|
856 |
-
|
857 |
else:
|
858 |
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
|
859 |
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
|
860 |
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
|
861 |
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
|
862 |
-
state_dict[
|
863 |
-
|
864 |
-
|
865 |
-
state_dict[
|
866 |
-
|
867 |
-
|
868 |
-
state_dict[
|
869 |
-
|
870 |
-
|
871 |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
|
872 |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
|
873 |
: Wkv_biases.shape[0] // 2
|
874 |
]
|
875 |
-
state_dict[
|
876 |
-
|
877 |
-
|
878 |
|
879 |
def inv_key_mapping_ln(key):
|
880 |
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
|
@@ -946,3 +947,117 @@ def inv_remap_state_dict(state_dict, config: PretrainedConfig):
|
|
946 |
)
|
947 |
|
948 |
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
import torch.nn as nn
|
19 |
import torch.nn.functional as F
|
20 |
import torch.utils.checkpoint
|
21 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
22 |
from einops import rearrange
|
23 |
from transformers import PretrainedConfig
|
24 |
from transformers.modeling_utils import PreTrainedModel
|
25 |
+
from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput
|
26 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
27 |
|
28 |
from transformers.models.bert.modeling_bert import (
|
|
|
430 |
for key, value in kwargs.items():
|
431 |
if value is not None:
|
432 |
logger.warning(
|
433 |
+
"Flash attention implementation does not support kwargs: %s",
|
434 |
key,
|
435 |
)
|
436 |
|
|
|
835 |
if not last_layer_subset or d != (config.num_hidden_layers - 1):
|
836 |
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
|
837 |
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
|
838 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = (
|
839 |
+
Wqkv_weights[: Wqkv_weights.shape[0] // 3, :]
|
840 |
+
)
|
841 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = (
|
842 |
+
Wqkv_weights[
|
843 |
+
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
|
844 |
+
]
|
845 |
+
)
|
846 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = (
|
847 |
+
Wqkv_weights[2 * Wqkv_weights.shape[0] // 3 :, :]
|
848 |
+
)
|
849 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = (
|
850 |
+
Wqkv_biases[: Wqkv_biases.shape[0] // 3]
|
851 |
+
)
|
852 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = (
|
853 |
+
Wqkv_biases[Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3]
|
854 |
+
)
|
855 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = (
|
856 |
+
Wqkv_biases[2 * Wqkv_biases.shape[0] // 3 :]
|
857 |
+
)
|
858 |
else:
|
859 |
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
|
860 |
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
|
861 |
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
|
862 |
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
|
863 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = (
|
864 |
+
Wq_weight
|
865 |
+
)
|
866 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = (
|
867 |
+
Wkv_weights[: Wkv_weights.shape[0] // 2, :]
|
868 |
+
)
|
869 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = (
|
870 |
+
Wkv_weights[Wkv_weights.shape[0] // 2 :, :]
|
871 |
+
)
|
872 |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
|
873 |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
|
874 |
: Wkv_biases.shape[0] // 2
|
875 |
]
|
876 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = (
|
877 |
+
Wkv_biases[Wkv_biases.shape[0] // 2 :]
|
878 |
+
)
|
879 |
|
880 |
def inv_key_mapping_ln(key):
|
881 |
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
|
|
|
947 |
)
|
948 |
|
949 |
return state_dict
|
950 |
+
|
951 |
+
|
952 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
|
953 |
+
class XLMRobertaClassificationHead(nn.Module):
|
954 |
+
"""Head for sentence-level classification tasks."""
|
955 |
+
|
956 |
+
def __init__(self, config):
|
957 |
+
super().__init__()
|
958 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
959 |
+
classifier_dropout = (
|
960 |
+
config.classifier_dropout
|
961 |
+
if config.classifier_dropout is not None
|
962 |
+
else config.hidden_dropout_prob
|
963 |
+
)
|
964 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
965 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
966 |
+
|
967 |
+
def forward(self, features, **kwargs):
|
968 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
969 |
+
x = self.dropout(x)
|
970 |
+
x = self.dense(x)
|
971 |
+
x = torch.tanh(x)
|
972 |
+
x = self.dropout(x)
|
973 |
+
x = self.out_proj(x)
|
974 |
+
return x
|
975 |
+
|
976 |
+
|
977 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
978 |
+
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
979 |
+
def __init__(self, config):
|
980 |
+
super().__init__(config)
|
981 |
+
self.num_labels = config.num_labels
|
982 |
+
self.config = config
|
983 |
+
|
984 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
|
985 |
+
self.classifier = XLMRobertaClassificationHead(config)
|
986 |
+
|
987 |
+
# Initialize weights and apply final processing
|
988 |
+
self.post_init()
|
989 |
+
|
990 |
+
def forward(
|
991 |
+
self,
|
992 |
+
input_ids: Optional[torch.LongTensor] = None,
|
993 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
994 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
995 |
+
position_ids: Optional[torch.LongTensor] = None,
|
996 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
997 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
998 |
+
labels: Optional[torch.LongTensor] = None,
|
999 |
+
output_attentions: Optional[bool] = None,
|
1000 |
+
output_hidden_states: Optional[bool] = None,
|
1001 |
+
return_dict: Optional[bool] = None,
|
1002 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1003 |
+
r"""
|
1004 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1005 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1006 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1007 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1008 |
+
"""
|
1009 |
+
return_dict = (
|
1010 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
outputs = self.roberta(
|
1014 |
+
input_ids,
|
1015 |
+
attention_mask=attention_mask,
|
1016 |
+
token_type_ids=token_type_ids,
|
1017 |
+
position_ids=position_ids,
|
1018 |
+
head_mask=head_mask,
|
1019 |
+
inputs_embeds=inputs_embeds,
|
1020 |
+
output_attentions=output_attentions,
|
1021 |
+
output_hidden_states=output_hidden_states,
|
1022 |
+
return_dict=return_dict,
|
1023 |
+
)
|
1024 |
+
sequence_output = outputs[0]
|
1025 |
+
logits = self.classifier(sequence_output)
|
1026 |
+
|
1027 |
+
loss = None
|
1028 |
+
if labels is not None:
|
1029 |
+
# move labels to correct device to enable model parallelism
|
1030 |
+
labels = labels.to(logits.device)
|
1031 |
+
if self.config.problem_type is None:
|
1032 |
+
if self.num_labels == 1:
|
1033 |
+
self.config.problem_type = "regression"
|
1034 |
+
elif self.num_labels > 1 and (
|
1035 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1036 |
+
):
|
1037 |
+
self.config.problem_type = "single_label_classification"
|
1038 |
+
else:
|
1039 |
+
self.config.problem_type = "multi_label_classification"
|
1040 |
+
|
1041 |
+
if self.config.problem_type == "regression":
|
1042 |
+
loss_fct = MSELoss()
|
1043 |
+
if self.num_labels == 1:
|
1044 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1045 |
+
else:
|
1046 |
+
loss = loss_fct(logits, labels)
|
1047 |
+
elif self.config.problem_type == "single_label_classification":
|
1048 |
+
loss_fct = CrossEntropyLoss()
|
1049 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1050 |
+
elif self.config.problem_type == "multi_label_classification":
|
1051 |
+
loss_fct = BCEWithLogitsLoss()
|
1052 |
+
loss = loss_fct(logits, labels)
|
1053 |
+
|
1054 |
+
if not return_dict:
|
1055 |
+
output = (logits,) + outputs[2:]
|
1056 |
+
return ((loss,) + output) if loss is not None else output
|
1057 |
+
|
1058 |
+
return SequenceClassifierOutput(
|
1059 |
+
loss=loss,
|
1060 |
+
logits=logits,
|
1061 |
+
hidden_states=outputs.hidden_states,
|
1062 |
+
attentions=outputs.attentions,
|
1063 |
+
)
|