File size: 3,740 Bytes
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
95b4916
2e3ebcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95fd08c
2e3ebcb
 
 
 
 
 
95fd08c
 
 
 
 
 
 
 
 
 
2cc8472
95fd08c
2e3ebcb
 
ab85772
2e3ebcb
 
 
 
 
 
95fd08c
 
 
 
 
 
 
2cc8472
95fd08c
2cc8472
2e3ebcb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py
# Commit id: f1a73d074002226c42ce65a1df170ecff9f022c0

# Copyright (c) 2022, Tri Dao.

import torch
import torch.nn as nn
from einops import rearrange
from torch import Tensor

from transformers.models.xlm_roberta.modeling_xlm_roberta import create_position_ids_from_input_ids


class XLMRobertaEmbeddings(nn.Module):
    def __init__(
        self,
        embed_dim,
        vocab_size,
        max_position_embeddings,
        type_vocab_size,
        padding_idx=None,
        device=None,
        dtype=None,
    ):
        """
        If max_position_embeddings <= 0, there's no position embeddings
        If type_vocab_size <= 0, there's no token type embeddings
        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs
        )
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        if self.max_position_embeddings > 0:
            self.position_embeddings = nn.Embedding(
                max_position_embeddings, embed_dim, **factory_kwargs
            )
        if self.type_vocab_size > 0:
            self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, adapter_mask=None):
        """
        input_ids: (batch, seqlen)
        position_ids: (batch, seqlen)
        token_type_ids: (batch, seqlen)
        """
        batch_size, seqlen = input_ids.shape
        if adapter_mask is not None:
            unique_tasks = torch.unique(adapter_mask)
            embedding_dtype = next(self.word_embeddings.parameters()).dtype
            embeddings = torch.empty(*input_ids.shape, self.word_embeddings.embedding_dim,
                                            dtype=embedding_dtype, device=input_ids.device)
            for task_id in unique_tasks:
                task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0]
                task_input_ids = input_ids[task_indices]
                task_embeddings = self.word_embeddings(task_input_ids, task_id=task_id)
                embeddings[task_indices] = task_embeddings
        else:
            embeddings = self.word_embeddings(input_ids)
        if self.max_position_embeddings > 0:
            if position_ids is None:
                position_ids = create_position_ids_from_input_ids(input_ids, padding_idx=self.word_embeddings.padding_idx).to(input_ids.device)
                # position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
            position_embeddings = self.position_embeddings(position_ids)
            embeddings = embeddings + position_embeddings
        if self.type_vocab_size > 0:
            if token_type_ids is None:
                token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)

            if adapter_mask is not None:
                unique_tasks = torch.unique(adapter_mask)
                for task_id in unique_tasks:
                    task_token_type_embeddings = self.token_type_embeddings(token_type_ids, task_id=task_id)
                    task_indices = (adapter_mask == task_id).nonzero(as_tuple=True)[0]
                    embeddings[task_indices] = embeddings[task_indices] + task_token_type_embeddings
            else:
                token_type_embeddings = self.token_type_embeddings(token_type_ids)
                embeddings = embeddings + token_type_embeddings
        return embeddings