clean code
Browse files- configuration_jetmoe.py +0 -269
- modeling_jetmoe.py +0 -1399
configuration_jetmoe.py
DELETED
@@ -1,269 +0,0 @@
|
|
1 |
-
""" JetMoE model configuration"""
|
2 |
-
from collections import OrderedDict
|
3 |
-
from typing import Any, List, Mapping, Optional
|
4 |
-
|
5 |
-
from transformers import PreTrainedTokenizer, TensorType, is_torch_available
|
6 |
-
from transformers.configuration_utils import PretrainedConfig
|
7 |
-
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
8 |
-
from transformers.utils import logging
|
9 |
-
import torch.nn.init as init
|
10 |
-
import json
|
11 |
-
|
12 |
-
logger = logging.get_logger(__name__)
|
13 |
-
|
14 |
-
|
15 |
-
class JetMoEConfig(PretrainedConfig):
|
16 |
-
r"""
|
17 |
-
This is the configuration class to store the configuration of a [`JetMoEModel`]. It is used to instantiate a
|
18 |
-
JetMoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
19 |
-
with the defaults will yield a similar configuration to that of the JetMoE
|
20 |
-
[jetmoe-small](https://huggingface.co/jetmoe-small) architecture. Configuration objects
|
21 |
-
inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from
|
22 |
-
[`PretrainedConfig`] for more information.
|
23 |
-
|
24 |
-
Args:
|
25 |
-
vocab_size (`int`, *optional*, defaults to 50400):
|
26 |
-
Vocabulary size of the JetMoE model. Defines the number of different tokens that can be represented by the
|
27 |
-
`inputs_ids` passed when calling [`JetMoEModel`].
|
28 |
-
n_positions (`int`, *optional*, defaults to 2048):
|
29 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
30 |
-
just in case (e.g., 512 or 1024 or 2048).
|
31 |
-
n_embd (`int`, *optional*, defaults to 4096):
|
32 |
-
Dimensionality of the embeddings and hidden states.
|
33 |
-
n_layer (`int`, *optional*, defaults to 28):
|
34 |
-
Number of hidden layers in the Transformer encoder.
|
35 |
-
n_head (`int`, *optional*, defaults to 16):
|
36 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
-
rotary_dim (`int`, *optional*, defaults to 64):
|
38 |
-
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
39 |
-
n_inner (`int`, *optional*, defaults to None):
|
40 |
-
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
41 |
-
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
42 |
-
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
43 |
-
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
44 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
45 |
-
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
46 |
-
The dropout ratio for the embeddings.
|
47 |
-
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
48 |
-
The dropout ratio for the attention.
|
49 |
-
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
50 |
-
The epsilon to use in the layer normalization layers.
|
51 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
52 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
53 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
55 |
-
|
56 |
-
Example:
|
57 |
-
|
58 |
-
```python
|
59 |
-
>>> from transformers import JetMoEConfig, JetMoEModel
|
60 |
-
|
61 |
-
>>> # Initializing a JetMoE 6B configuration
|
62 |
-
>>> configuration = JetMoEConfig()
|
63 |
-
|
64 |
-
>>> # Initializing a model (with random weights) from the configuration
|
65 |
-
>>> model = JetMoEModel(configuration)
|
66 |
-
|
67 |
-
>>> # Accessing the model configuration
|
68 |
-
>>> configuration = model.config
|
69 |
-
```"""
|
70 |
-
model_type = "jetmoe"
|
71 |
-
attribute_map = {
|
72 |
-
"max_position_embeddings": "n_positions",
|
73 |
-
"hidden_size": "n_embd",
|
74 |
-
"num_attention_heads": "n_head",
|
75 |
-
"num_hidden_layers": "num_layers",
|
76 |
-
}
|
77 |
-
|
78 |
-
def __init__(
|
79 |
-
self,
|
80 |
-
vocab_size=50295,
|
81 |
-
hidden_size=1024,
|
82 |
-
num_layers=24,
|
83 |
-
num_attention_heads=16,
|
84 |
-
kv_channels = 128,
|
85 |
-
ffn_hidden_size=2048,
|
86 |
-
max_position_embeddings=4096,
|
87 |
-
rotary_percent=1.0,
|
88 |
-
activation_function="silu",
|
89 |
-
glu=True,
|
90 |
-
moe_num_experts=8,
|
91 |
-
moe_top_k=2,
|
92 |
-
use_cache=True,
|
93 |
-
bos_token_id=1,
|
94 |
-
eos_token_id=2,
|
95 |
-
tie_word_embeddings=True,
|
96 |
-
bias=True,
|
97 |
-
rope_theta=10000.0,
|
98 |
-
rms_norm_eps=1e-6,
|
99 |
-
initializer_range=0.01,
|
100 |
-
**kwargs,
|
101 |
-
):
|
102 |
-
self.vocab_size = vocab_size
|
103 |
-
self.hidden_size = hidden_size
|
104 |
-
self.num_layers = num_layers
|
105 |
-
self.num_attention_heads = num_attention_heads
|
106 |
-
self.kv_channels = kv_channels
|
107 |
-
self.ffn_hidden_size = ffn_hidden_size
|
108 |
-
self.max_position_embeddings = max_position_embeddings
|
109 |
-
self.rotary_percent = rotary_percent
|
110 |
-
self.activation_function = activation_function
|
111 |
-
self.glu = glu
|
112 |
-
self.moe_num_experts = moe_num_experts
|
113 |
-
self.moe_top_k = moe_top_k
|
114 |
-
self.use_cache = use_cache
|
115 |
-
self.initializer_range = initializer_range
|
116 |
-
|
117 |
-
self.bos_token_id = bos_token_id
|
118 |
-
self.eos_token_id = eos_token_id
|
119 |
-
|
120 |
-
self.init_method = init.xavier_uniform_
|
121 |
-
self.output_layer_init_method = init.xavier_uniform_
|
122 |
-
self.bias = bias
|
123 |
-
self.rope_theta = rope_theta
|
124 |
-
self.rms_norm_eps = rms_norm_eps
|
125 |
-
|
126 |
-
super().__init__(
|
127 |
-
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
128 |
-
)
|
129 |
-
|
130 |
-
def to_dict(self):
|
131 |
-
"""Returns a dictionary representation of the config, excluding non-serializable attributes."""
|
132 |
-
return {k: v for k, v in self.__dict__.items() if k not in ['init_method', 'output_layer_init_method', 'torch_dtype', '_pre_quantization_dtype', 'quantization_config']}
|
133 |
-
|
134 |
-
def to_json_string(self, use_diff=False):
|
135 |
-
"""Serializes this instance to a JSON string, excluding non-serializable attributes.
|
136 |
-
|
137 |
-
Args:
|
138 |
-
use_diff (bool): Whether to use differences with the default config. This argument is
|
139 |
-
accepted for compatibility with the transformers library but is not
|
140 |
-
used in this custom implementation.
|
141 |
-
"""
|
142 |
-
config_dict = self.to_dict() # Assuming you have a to_dict method as shown earlier
|
143 |
-
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
144 |
-
|
145 |
-
class JetMoEOnnxConfig(OnnxConfigWithPast):
|
146 |
-
def __init__(
|
147 |
-
self,
|
148 |
-
config: PretrainedConfig,
|
149 |
-
task: str = "default",
|
150 |
-
patching_specs: List[PatchingSpec] = None,
|
151 |
-
use_past: bool = False,
|
152 |
-
):
|
153 |
-
"""
|
154 |
-
Initialize the JetMoEOnnxConfig.
|
155 |
-
|
156 |
-
Args:
|
157 |
-
config (PretrainedConfig): Pretrained model configuration.
|
158 |
-
task (str): Task description.
|
159 |
-
patching_specs (List[PatchingSpec]): List of patching specifications.
|
160 |
-
use_past (bool): Whether to use past tokens in the configuration.
|
161 |
-
"""
|
162 |
-
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
163 |
-
if not getattr(self._config, "pad_token_id", None):
|
164 |
-
# TODO: how to do that better?
|
165 |
-
self._config.pad_token_id = 0
|
166 |
-
|
167 |
-
@property
|
168 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
169 |
-
"""
|
170 |
-
Define the input mappings.
|
171 |
-
|
172 |
-
Returns:
|
173 |
-
Mapping[str, Mapping[int, str]]: Input mappings.
|
174 |
-
"""
|
175 |
-
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
176 |
-
if self.use_past:
|
177 |
-
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
178 |
-
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
179 |
-
else:
|
180 |
-
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
181 |
-
|
182 |
-
return common_inputs
|
183 |
-
|
184 |
-
@property
|
185 |
-
def num_layers(self) -> int:
|
186 |
-
"""
|
187 |
-
Get the number of layers.
|
188 |
-
|
189 |
-
Returns:
|
190 |
-
int: Number of layers.
|
191 |
-
"""
|
192 |
-
return self._config.n_layer
|
193 |
-
|
194 |
-
@property
|
195 |
-
def num_attention_heads(self) -> int:
|
196 |
-
"""
|
197 |
-
Get the number of attention heads.
|
198 |
-
|
199 |
-
Returns:
|
200 |
-
int: Number of attention heads.
|
201 |
-
"""
|
202 |
-
return self._config.n_head
|
203 |
-
|
204 |
-
def generate_dummy_inputs(
|
205 |
-
self,
|
206 |
-
tokenizer: PreTrainedTokenizer,
|
207 |
-
batch_size: int = -1,
|
208 |
-
seq_length: int = -1,
|
209 |
-
is_pair: bool = False,
|
210 |
-
framework: Optional[TensorType] = None,
|
211 |
-
) -> Mapping[str, Any]:
|
212 |
-
"""
|
213 |
-
Generate dummy inputs for testing.
|
214 |
-
|
215 |
-
Args:
|
216 |
-
tokenizer (PreTrainedTokenizer): Pretrained tokenizer.
|
217 |
-
batch_size (int): Batch size.
|
218 |
-
seq_length (int): Sequence length.
|
219 |
-
is_pair (bool): Whether the input is a pair.
|
220 |
-
framework (Optional[TensorType]): Tensor framework.
|
221 |
-
|
222 |
-
Returns:
|
223 |
-
Mapping[str, Any]: Dummy inputs.
|
224 |
-
"""
|
225 |
-
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
226 |
-
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
227 |
-
)
|
228 |
-
|
229 |
-
# We need to order the input in the way they appears in the forward()
|
230 |
-
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
231 |
-
|
232 |
-
# Need to add the past_keys
|
233 |
-
if self.use_past:
|
234 |
-
if not is_torch_available():
|
235 |
-
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
236 |
-
else:
|
237 |
-
import torch
|
238 |
-
|
239 |
-
batch, seqlen = common_inputs["input_ids"].shape
|
240 |
-
# Not using the same length for past_key_values
|
241 |
-
past_key_values_length = seqlen + 2
|
242 |
-
past_shape = (
|
243 |
-
batch,
|
244 |
-
self.num_attention_heads,
|
245 |
-
past_key_values_length,
|
246 |
-
self._config.hidden_size // self.num_attention_heads,
|
247 |
-
)
|
248 |
-
ordered_inputs["past_key_values"] = [
|
249 |
-
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
250 |
-
]
|
251 |
-
|
252 |
-
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
253 |
-
if self.use_past:
|
254 |
-
mask_dtype = ordered_inputs["attention_mask"].dtype
|
255 |
-
ordered_inputs["attention_mask"] = torch.cat(
|
256 |
-
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
257 |
-
)
|
258 |
-
|
259 |
-
return ordered_inputs
|
260 |
-
|
261 |
-
@property
|
262 |
-
def default_onnx_opset(self) -> int:
|
263 |
-
"""
|
264 |
-
Get the default ONNX opset version.
|
265 |
-
|
266 |
-
Returns:
|
267 |
-
int: Default ONNX opset version.
|
268 |
-
"""
|
269 |
-
return 13
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_jetmoe.py
DELETED
@@ -1,1399 +0,0 @@
|
|
1 |
-
""" PyTorch JetMoE model."""
|
2 |
-
|
3 |
-
from typing import List, Optional, Tuple, Union
|
4 |
-
import warnings, math
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.utils.checkpoint
|
8 |
-
from torch import nn
|
9 |
-
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
10 |
-
from torch.nn import functional as F
|
11 |
-
|
12 |
-
import megablocks
|
13 |
-
from transformers.modeling_outputs import (
|
14 |
-
BaseModelOutputWithPast,
|
15 |
-
CausalLMOutputWithPast,
|
16 |
-
SequenceClassifierOutputWithPast,
|
17 |
-
dataclass
|
18 |
-
)
|
19 |
-
from transformers.modeling_utils import PreTrainedModel
|
20 |
-
from transformers.utils import (
|
21 |
-
add_start_docstrings,
|
22 |
-
add_start_docstrings_to_model_forward,
|
23 |
-
is_flash_attn_2_available,
|
24 |
-
is_flash_attn_greater_or_equal_2_10,
|
25 |
-
replace_return_docstrings,
|
26 |
-
logging
|
27 |
-
)
|
28 |
-
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
29 |
-
from transformers.cache_utils import Cache, DynamicCache
|
30 |
-
from .configuration_jetmoe import JetMoEConfig
|
31 |
-
from jetmoe_model.utils import moe
|
32 |
-
|
33 |
-
if is_flash_attn_2_available():
|
34 |
-
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
35 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
36 |
-
|
37 |
-
logger = logging.get_logger(__name__)
|
38 |
-
|
39 |
-
_CHECKPOINT_FOR_DOC = "jetmoe"
|
40 |
-
_CONFIG_FOR_DOC = "JetMoEConfig"
|
41 |
-
|
42 |
-
|
43 |
-
@dataclass
|
44 |
-
class JetMoEBaseModelOutputWithPast(BaseModelOutputWithPast):
|
45 |
-
"""
|
46 |
-
Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
47 |
-
|
48 |
-
Args:
|
49 |
-
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
50 |
-
Sequence of hidden-states at the output of the last layer of the model.
|
51 |
-
|
52 |
-
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
53 |
-
hidden_size)` is output.
|
54 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
55 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
56 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
57 |
-
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
58 |
-
encoder_sequence_length, embed_size_per_head)`.
|
59 |
-
|
60 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
61 |
-
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
62 |
-
input) to speed up sequential decoding.
|
63 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
64 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
65 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
66 |
-
|
67 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
68 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
69 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
70 |
-
sequence_length)`.
|
71 |
-
|
72 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
73 |
-
heads.
|
74 |
-
"""
|
75 |
-
|
76 |
-
last_hidden_state: torch.FloatTensor = None
|
77 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
78 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
79 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
80 |
-
aux_loss: Optional[torch.FloatTensor] = None
|
81 |
-
|
82 |
-
|
83 |
-
@dataclass
|
84 |
-
class JetMoECausalLMOutputWithPast(CausalLMOutputWithPast):
|
85 |
-
"""
|
86 |
-
Base class for causal language model (or autoregressive) outputs.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
90 |
-
Language modeling loss (for next-token prediction).
|
91 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
92 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
93 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
94 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
95 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
96 |
-
|
97 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
98 |
-
`past_key_values` input) to speed up sequential decoding.
|
99 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
100 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
101 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
102 |
-
|
103 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
104 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
105 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
106 |
-
sequence_length)`.
|
107 |
-
|
108 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
109 |
-
heads.
|
110 |
-
"""
|
111 |
-
|
112 |
-
loss: Optional[torch.FloatTensor] = None
|
113 |
-
logits: torch.FloatTensor = None
|
114 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
115 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
116 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
117 |
-
aux_loss: Optional[torch.FloatTensor] = None
|
118 |
-
|
119 |
-
|
120 |
-
@dataclass
|
121 |
-
class JetMoESequenceClassifierOutputWithPast(SequenceClassifierOutputWithPast):
|
122 |
-
"""
|
123 |
-
Base class for outputs of sentence classification models.
|
124 |
-
|
125 |
-
Args:
|
126 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
127 |
-
Classification (or regression if config.num_labels==1) loss.
|
128 |
-
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
129 |
-
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
130 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
131 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
132 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
133 |
-
|
134 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
135 |
-
`past_key_values` input) to speed up sequential decoding.
|
136 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
137 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
138 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
139 |
-
|
140 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
141 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
142 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
143 |
-
sequence_length)`.
|
144 |
-
|
145 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
146 |
-
heads.
|
147 |
-
"""
|
148 |
-
|
149 |
-
loss: Optional[torch.FloatTensor] = None
|
150 |
-
logits: torch.FloatTensor = None
|
151 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
152 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
153 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
154 |
-
aux_loss: Optional[torch.FloatTensor] = None
|
155 |
-
|
156 |
-
|
157 |
-
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
158 |
-
def _get_unpad_data(attention_mask):
|
159 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
160 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
161 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
162 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
163 |
-
return (
|
164 |
-
indices,
|
165 |
-
cu_seqlens,
|
166 |
-
max_seqlen_in_batch,
|
167 |
-
)
|
168 |
-
|
169 |
-
class JetMoERMSNorm(nn.Module):
|
170 |
-
def __init__(self, hidden_size, eps=1e-6):
|
171 |
-
"""
|
172 |
-
JetMoERMSNorm module
|
173 |
-
"""
|
174 |
-
super().__init__()
|
175 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
176 |
-
self.variance_epsilon = eps
|
177 |
-
|
178 |
-
def forward(self, hidden_states):
|
179 |
-
input_dtype = hidden_states.dtype
|
180 |
-
hidden_states = hidden_states.to(torch.float32)
|
181 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
182 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
183 |
-
return self.weight * hidden_states.to(input_dtype)
|
184 |
-
|
185 |
-
|
186 |
-
# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding
|
187 |
-
class JetMoERotaryEmbedding(nn.Module):
|
188 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
189 |
-
super().__init__()
|
190 |
-
|
191 |
-
self.dim = dim
|
192 |
-
self.max_position_embeddings = max_position_embeddings
|
193 |
-
self.base = base
|
194 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
195 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
196 |
-
|
197 |
-
# Build here to make `torch.jit.trace` work.
|
198 |
-
self._set_cos_sin_cache(
|
199 |
-
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
200 |
-
)
|
201 |
-
|
202 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
203 |
-
self.max_seq_len_cached = seq_len
|
204 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
205 |
-
|
206 |
-
freqs = torch.outer(t, self.inv_freq)
|
207 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
208 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
209 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
210 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
211 |
-
|
212 |
-
def forward(self, x, seq_len=None):
|
213 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
214 |
-
if seq_len > self.max_seq_len_cached:
|
215 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
216 |
-
|
217 |
-
return (
|
218 |
-
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
219 |
-
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
220 |
-
)
|
221 |
-
|
222 |
-
|
223 |
-
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
224 |
-
def rotate_half(x):
|
225 |
-
"""Rotates half the hidden dims of the input."""
|
226 |
-
x1 = x[..., : x.shape[-1] // 2]
|
227 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
228 |
-
return torch.cat((-x2, x1), dim=-1)
|
229 |
-
|
230 |
-
|
231 |
-
# copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
232 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=2):
|
233 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
234 |
-
|
235 |
-
Args:
|
236 |
-
q (`torch.Tensor`): The query tensor.
|
237 |
-
k (`torch.Tensor`): The key tensor.
|
238 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
239 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
240 |
-
position_ids (`torch.Tensor`):
|
241 |
-
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
242 |
-
used to pass offsetted position ids when working with a KV-cache.
|
243 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
244 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
245 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
246 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
247 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
248 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
249 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
250 |
-
Returns:
|
251 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
252 |
-
"""
|
253 |
-
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
254 |
-
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
255 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
256 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
257 |
-
return q_embed, k_embed
|
258 |
-
|
259 |
-
|
260 |
-
class JetMoEAttention(nn.Module):
|
261 |
-
"""
|
262 |
-
Multi-headed attention from 'Attention Is All You Need' paper.
|
263 |
-
"""
|
264 |
-
|
265 |
-
def __init__(self, config: JetMoEConfig, layer_idx: Optional[int] = None):
|
266 |
-
"""
|
267 |
-
Initialize the JetMoEAttention module.
|
268 |
-
|
269 |
-
Args:
|
270 |
-
config: Configuration object with model hyperparameters.
|
271 |
-
"""
|
272 |
-
super().__init__()
|
273 |
-
self.config = config
|
274 |
-
self.layer_idx = layer_idx
|
275 |
-
self.is_causal = True
|
276 |
-
if layer_idx is None:
|
277 |
-
logger.warning_once(
|
278 |
-
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
279 |
-
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
280 |
-
"when creating this class."
|
281 |
-
)
|
282 |
-
|
283 |
-
self.top_k = config.moe_top_k
|
284 |
-
|
285 |
-
self.kv_projection_size = config.kv_channels * config.num_attention_heads
|
286 |
-
self.num_key_value_heads = config.num_attention_heads
|
287 |
-
self.num_heads = self.num_key_value_heads * self.top_k
|
288 |
-
self.hidden_size_per_attention_head = config.kv_channels
|
289 |
-
|
290 |
-
self.experts = moe.MoE(
|
291 |
-
input_size=config.hidden_size,
|
292 |
-
hidden_size=self.kv_projection_size,
|
293 |
-
num_experts=config.moe_num_experts,
|
294 |
-
top_k=config.moe_top_k,
|
295 |
-
glu=False
|
296 |
-
)
|
297 |
-
|
298 |
-
self.kv_proj = torch.nn.Linear(
|
299 |
-
config.hidden_size, self.kv_projection_size * 2, bias=False
|
300 |
-
)
|
301 |
-
|
302 |
-
self.rotary_emb = JetMoERotaryEmbedding(
|
303 |
-
config.kv_channels,
|
304 |
-
max_position_embeddings=config.max_position_embeddings,
|
305 |
-
base=config.rope_theta,
|
306 |
-
)
|
307 |
-
|
308 |
-
# def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
309 |
-
# return tensor.view(bsz, seq_len, self.num_attention_heads, self.hidden_size_per_attention_head).transpose(1, 2).contiguous()
|
310 |
-
|
311 |
-
def forward(
|
312 |
-
self,
|
313 |
-
hidden_states: torch.Tensor,
|
314 |
-
attention_mask: Optional[torch.Tensor] = None,
|
315 |
-
position_ids: Optional[torch.LongTensor] = None,
|
316 |
-
past_key_value: Optional[Cache] = None,
|
317 |
-
output_attentions: bool = False,
|
318 |
-
use_cache: bool = False,
|
319 |
-
**kwargs,
|
320 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
321 |
-
if "padding_mask" in kwargs:
|
322 |
-
warnings.warn(
|
323 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
324 |
-
)
|
325 |
-
bsz, q_len, _ = hidden_states.size()
|
326 |
-
|
327 |
-
query_states, aux_loss = self.experts.map(hidden_states)
|
328 |
-
key_states, value_states = self.kv_proj(hidden_states).chunk(2, dim=-1)
|
329 |
-
|
330 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.hidden_size_per_attention_head).transpose(1, 2)
|
331 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.hidden_size_per_attention_head).transpose(1, 2)
|
332 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.hidden_size_per_attention_head).transpose(1, 2)
|
333 |
-
|
334 |
-
kv_seq_len = key_states.shape[2]
|
335 |
-
if past_key_value is not None:
|
336 |
-
if self.layer_idx is None:
|
337 |
-
raise ValueError(
|
338 |
-
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
339 |
-
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
340 |
-
"with a layer index."
|
341 |
-
)
|
342 |
-
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
343 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
344 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, unsqueeze_dim=1)
|
345 |
-
|
346 |
-
if past_key_value is not None:
|
347 |
-
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
348 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
349 |
-
|
350 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
351 |
-
key_states = key_states.repeat(1, self.top_k, 1, 1)
|
352 |
-
value_states = value_states.repeat(1, self.top_k, 1, 1)
|
353 |
-
|
354 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.hidden_size_per_attention_head)
|
355 |
-
|
356 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
357 |
-
raise ValueError(
|
358 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
359 |
-
f" {attn_weights.size()}"
|
360 |
-
)
|
361 |
-
|
362 |
-
if attention_mask is not None:
|
363 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
364 |
-
raise ValueError(
|
365 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
366 |
-
)
|
367 |
-
|
368 |
-
attn_weights = attn_weights + attention_mask
|
369 |
-
|
370 |
-
# upcast attention to fp32
|
371 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
372 |
-
# attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
373 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
374 |
-
|
375 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.hidden_size_per_attention_head):
|
376 |
-
raise ValueError(
|
377 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.hidden_size_per_attention_head)}, but is"
|
378 |
-
f" {attn_output.size()}"
|
379 |
-
)
|
380 |
-
|
381 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
382 |
-
attn_output = attn_output.reshape(bsz, q_len, self.top_k, self.kv_projection_size)
|
383 |
-
|
384 |
-
attn_output = self.experts.reduce(attn_output)
|
385 |
-
attn_output = attn_output.view(bsz, q_len, -1)
|
386 |
-
|
387 |
-
if not output_attentions:
|
388 |
-
attn_weights = None
|
389 |
-
|
390 |
-
return attn_output, attn_weights, past_key_value, aux_loss
|
391 |
-
|
392 |
-
|
393 |
-
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->JetMoE
|
394 |
-
class JetMoESdpaAttention(JetMoEAttention):
|
395 |
-
"""
|
396 |
-
JetMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
397 |
-
`JetMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
398 |
-
SDPA API.
|
399 |
-
"""
|
400 |
-
|
401 |
-
# Adapted from JetMoEAttention.forward
|
402 |
-
def forward(
|
403 |
-
self,
|
404 |
-
hidden_states: torch.Tensor,
|
405 |
-
attention_mask: Optional[torch.Tensor] = None,
|
406 |
-
position_ids: Optional[torch.LongTensor] = None,
|
407 |
-
past_key_value: Optional[Cache] = None,
|
408 |
-
output_attentions: bool = False,
|
409 |
-
use_cache: bool = False,
|
410 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
411 |
-
if output_attentions:
|
412 |
-
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
413 |
-
logger.warning_once(
|
414 |
-
"JetMoEModel is using JetMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
415 |
-
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
416 |
-
)
|
417 |
-
return super().forward(
|
418 |
-
hidden_states=hidden_states,
|
419 |
-
attention_mask=attention_mask,
|
420 |
-
position_ids=position_ids,
|
421 |
-
past_key_value=past_key_value,
|
422 |
-
output_attentions=output_attentions,
|
423 |
-
use_cache=use_cache,
|
424 |
-
)
|
425 |
-
|
426 |
-
bsz, q_len, _ = hidden_states.size()
|
427 |
-
|
428 |
-
query_states, aux_loss = self.experts.map(hidden_states)
|
429 |
-
key_states, value_states = self.kv_proj(hidden_states).chunk(2, dim=-1)
|
430 |
-
|
431 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.hidden_size_per_attention_head).transpose(1, 2)
|
432 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.hidden_size_per_attention_head).transpose(1, 2)
|
433 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.hidden_size_per_attention_head).transpose(1, 2)
|
434 |
-
|
435 |
-
kv_seq_len = key_states.shape[2]
|
436 |
-
if past_key_value is not None:
|
437 |
-
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
438 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
439 |
-
|
440 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, unsqueeze_dim=1)
|
441 |
-
|
442 |
-
if past_key_value is not None:
|
443 |
-
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
444 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
445 |
-
|
446 |
-
key_states = key_states.repeat(1, self.top_k, 1, 1)
|
447 |
-
value_states = value_states.repeat(1, self.top_k, 1, 1)
|
448 |
-
|
449 |
-
if attention_mask is not None:
|
450 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
451 |
-
raise ValueError(
|
452 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
453 |
-
)
|
454 |
-
|
455 |
-
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
456 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
457 |
-
if query_states.device.type == "cuda" and attention_mask is not None:
|
458 |
-
query_states = query_states.contiguous()
|
459 |
-
key_states = key_states.contiguous()
|
460 |
-
value_states = value_states.contiguous()
|
461 |
-
|
462 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
463 |
-
query_states,
|
464 |
-
key_states,
|
465 |
-
value_states,
|
466 |
-
attn_mask=attention_mask,
|
467 |
-
dropout_p=0.0,
|
468 |
-
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
469 |
-
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
470 |
-
)
|
471 |
-
|
472 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
473 |
-
attn_output = attn_output.reshape(bsz, q_len, self.top_k, self.kv_projection_size)
|
474 |
-
|
475 |
-
attn_output = self.experts.reduce(attn_output)
|
476 |
-
attn_output = attn_output.view(bsz, q_len, -1)
|
477 |
-
|
478 |
-
return attn_output, None, past_key_value, aux_loss
|
479 |
-
|
480 |
-
|
481 |
-
class JetMoEFlashAttention2(JetMoEAttention):
|
482 |
-
def __init__(self, *args, **kwargs):
|
483 |
-
super().__init__(*args, **kwargs)
|
484 |
-
|
485 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
486 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
487 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
488 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
489 |
-
|
490 |
-
def forward(
|
491 |
-
self,
|
492 |
-
hidden_states: Optional[torch.FloatTensor],
|
493 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
494 |
-
position_ids: Optional[torch.LongTensor] = None,
|
495 |
-
past_key_value: Optional[Cache] = None,
|
496 |
-
use_cache: Optional[bool] = False,
|
497 |
-
output_attentions: Optional[bool] = False,
|
498 |
-
**kwargs,
|
499 |
-
) -> Union[
|
500 |
-
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
501 |
-
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
502 |
-
]:
|
503 |
-
"""
|
504 |
-
Forward pass of the JetMoEAttention module.
|
505 |
-
|
506 |
-
Args:
|
507 |
-
hidden_states (Optional[torch.FloatTensor]): Input hidden states.
|
508 |
-
attention_mask (Optional[torch.FloatTensor]): Attention mask.
|
509 |
-
layer_past (Optional[Tuple[torch.Tensor]]): Past layer state.
|
510 |
-
use_cache (Optional[bool]): Whether to use cached states.
|
511 |
-
output_attentions (Optional[bool]): Whether to output attention weights.
|
512 |
-
|
513 |
-
Returns:
|
514 |
-
Union[Tuple[torch.Tensor, Tuple[torch.Tensor]], Optional[Tuple[...]]]: Tuple containing outputs.
|
515 |
-
"""
|
516 |
-
#assert attention_mask is None, "attention_mask is not supported"
|
517 |
-
assert output_attentions is False, "output_attentions is not supported"
|
518 |
-
|
519 |
-
B, T, C = hidden_states.size() # batch size, sequence length, embedding dimensionality (hidden_size)
|
520 |
-
|
521 |
-
# calculate query, key, values
|
522 |
-
query_layer, aux_loss = self.experts.map(hidden_states)
|
523 |
-
key_layer, value_layer = self.kv_proj(hidden_states).chunk(2, dim=-1)
|
524 |
-
|
525 |
-
query_layer = query_layer.view(B, T, self.num_heads, self.hidden_size_per_attention_head) # (B, T, k * nh, hs)
|
526 |
-
key_layer = key_layer.view(B, T, self.num_key_value_heads, self.hidden_size_per_attention_head) # (B, T, nh, hs)
|
527 |
-
value_layer = value_layer.view(B, T, self.num_key_value_heads, self.hidden_size_per_attention_head) # (B, T, nh, hs)
|
528 |
-
|
529 |
-
kv_seq_len = key_layer.shape[1]
|
530 |
-
if past_key_value is not None:
|
531 |
-
if self.layer_idx is None:
|
532 |
-
raise ValueError(
|
533 |
-
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
534 |
-
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
535 |
-
"with a layer index."
|
536 |
-
)
|
537 |
-
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
538 |
-
cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
|
539 |
-
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids)
|
540 |
-
|
541 |
-
# query_layer = query_layer.contiguous()
|
542 |
-
# expand the key_layer and value_layer [sk, b, ng, hn] -> [sk, b, np, hn]
|
543 |
-
key_layer = key_layer.repeat(1, 1, self.top_k, 1)
|
544 |
-
value_layer = value_layer.repeat(1, 1, self.top_k, 1)
|
545 |
-
|
546 |
-
if past_key_value is not None:
|
547 |
-
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
548 |
-
# print(self.layer_idx, key_layer.size())
|
549 |
-
key_layer = key_layer.transpose(1, 2)
|
550 |
-
value_layer = value_layer.transpose(1, 2)
|
551 |
-
key_layer, value_layer = past_key_value.update(key_layer, value_layer, self.layer_idx, cache_kwargs)
|
552 |
-
key_layer = key_layer.transpose(1, 2)
|
553 |
-
value_layer = value_layer.transpose(1, 2)
|
554 |
-
|
555 |
-
context_layer = self._flash_attention_forward(
|
556 |
-
query_layer,
|
557 |
-
key_layer,
|
558 |
-
value_layer,
|
559 |
-
attention_mask,
|
560 |
-
T,
|
561 |
-
)
|
562 |
-
|
563 |
-
# output projection
|
564 |
-
y = self.experts.reduce(context_layer.reshape(T, B, self.top_k, self.kv_projection_size))
|
565 |
-
y = y.view(B, T, C) # re-assemble all head outputs side by side
|
566 |
-
|
567 |
-
if not output_attentions:
|
568 |
-
attn_weights = None
|
569 |
-
|
570 |
-
return y, attn_weights, past_key_value, aux_loss
|
571 |
-
|
572 |
-
def _flash_attention_forward(
|
573 |
-
self,
|
574 |
-
query_states,
|
575 |
-
key_states,
|
576 |
-
value_states,
|
577 |
-
attention_mask,
|
578 |
-
query_length,
|
579 |
-
dropout=0.0,
|
580 |
-
softmax_scale=None,
|
581 |
-
):
|
582 |
-
"""
|
583 |
-
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
584 |
-
first unpad the input, then computes the attention scores and pad the final attention scores.
|
585 |
-
|
586 |
-
Args:
|
587 |
-
query_states (`torch.Tensor`):
|
588 |
-
Input query states to be passed to Flash Attention API
|
589 |
-
key_states (`torch.Tensor`):
|
590 |
-
Input key states to be passed to Flash Attention API
|
591 |
-
value_states (`torch.Tensor`):
|
592 |
-
Input value states to be passed to Flash Attention API
|
593 |
-
attention_mask (`torch.Tensor`):
|
594 |
-
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
595 |
-
position of padding tokens and 1 for the position of non-padding tokens.
|
596 |
-
dropout (`float`):
|
597 |
-
Attention dropout
|
598 |
-
softmax_scale (`float`, *optional*):
|
599 |
-
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
600 |
-
"""
|
601 |
-
if not self._flash_attn_uses_top_left_mask:
|
602 |
-
causal = self.is_causal
|
603 |
-
else:
|
604 |
-
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
605 |
-
causal = self.is_causal and query_length != 1
|
606 |
-
|
607 |
-
# Contains at least one padding token in the sequence
|
608 |
-
if attention_mask is not None:
|
609 |
-
batch_size = query_states.shape[0]
|
610 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
611 |
-
query_states, key_states, value_states, attention_mask, query_length
|
612 |
-
)
|
613 |
-
|
614 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
615 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
616 |
-
|
617 |
-
attn_output_unpad = flash_attn_varlen_func(
|
618 |
-
query_states,
|
619 |
-
key_states,
|
620 |
-
value_states,
|
621 |
-
cu_seqlens_q=cu_seqlens_q,
|
622 |
-
cu_seqlens_k=cu_seqlens_k,
|
623 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
624 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
625 |
-
dropout_p=dropout,
|
626 |
-
softmax_scale=softmax_scale,
|
627 |
-
causal=causal,
|
628 |
-
)
|
629 |
-
|
630 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
631 |
-
else:
|
632 |
-
attn_output = flash_attn_func(
|
633 |
-
query_states,
|
634 |
-
key_states,
|
635 |
-
value_states,
|
636 |
-
dropout,
|
637 |
-
softmax_scale=softmax_scale,
|
638 |
-
causal=causal
|
639 |
-
)
|
640 |
-
|
641 |
-
return attn_output
|
642 |
-
|
643 |
-
|
644 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
645 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
646 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
647 |
-
|
648 |
-
key_layer = index_first_axis(
|
649 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
650 |
-
)
|
651 |
-
value_layer = index_first_axis(
|
652 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
653 |
-
)
|
654 |
-
if query_length == kv_seq_len:
|
655 |
-
query_layer = index_first_axis(
|
656 |
-
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
657 |
-
)
|
658 |
-
cu_seqlens_q = cu_seqlens_k
|
659 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
660 |
-
indices_q = indices_k
|
661 |
-
elif query_length == 1:
|
662 |
-
max_seqlen_in_batch_q = 1
|
663 |
-
cu_seqlens_q = torch.arange(
|
664 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
665 |
-
) # There is a memcpy here, that is very bad.
|
666 |
-
indices_q = cu_seqlens_q[:-1]
|
667 |
-
query_layer = query_layer.squeeze(1)
|
668 |
-
else:
|
669 |
-
# The -q_len: slice assumes left padding.
|
670 |
-
attention_mask = attention_mask[:, -query_length:]
|
671 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
672 |
-
|
673 |
-
return (
|
674 |
-
query_layer,
|
675 |
-
key_layer,
|
676 |
-
value_layer,
|
677 |
-
indices_q,
|
678 |
-
(cu_seqlens_q, cu_seqlens_k),
|
679 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
680 |
-
)
|
681 |
-
|
682 |
-
|
683 |
-
JETMOE_ATTENTION_CLASSES = {
|
684 |
-
"eager": JetMoEAttention,
|
685 |
-
"flash_attention_2": JetMoEFlashAttention2,
|
686 |
-
"sdpa": JetMoESdpaAttention,
|
687 |
-
}
|
688 |
-
|
689 |
-
|
690 |
-
class JetMoEBlock(nn.Module):
|
691 |
-
def __init__(self, config: JetMoEConfig, layer_idx: Optional[int] = None):
|
692 |
-
"""
|
693 |
-
Initialize the JetMoEBlock module.
|
694 |
-
|
695 |
-
Args:
|
696 |
-
config: Configuration object with model hyperparameters.
|
697 |
-
"""
|
698 |
-
super().__init__()
|
699 |
-
self.input_layernorm = JetMoERMSNorm(config.hidden_size)
|
700 |
-
#self.self_attention = JetMoEAttention(config, layer_idx)
|
701 |
-
self.self_attention = JETMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
702 |
-
self.post_attention_layernorm = JetMoERMSNorm(config.hidden_size)
|
703 |
-
|
704 |
-
moe_args = megablocks.layers.arguments.from_megatron(config)
|
705 |
-
moe_args.activation_fn = F.silu
|
706 |
-
moe_args.return_bias = False
|
707 |
-
# self.mlp = megablocks.layers.dmoe.dMoE(moe_args)
|
708 |
-
self.mlp = moe.MoE(
|
709 |
-
input_size=config.hidden_size,
|
710 |
-
hidden_size=config.ffn_hidden_size,
|
711 |
-
num_experts=config.moe_num_experts,
|
712 |
-
activation=F.silu,
|
713 |
-
top_k=config.moe_top_k,
|
714 |
-
glu=config.glu
|
715 |
-
)
|
716 |
-
|
717 |
-
def forward(
|
718 |
-
self,
|
719 |
-
hidden_states: Optional[torch.FloatTensor],
|
720 |
-
position_ids: Optional[torch.LongTensor] = None,
|
721 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
722 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
723 |
-
output_attentions: Optional[bool] = False,
|
724 |
-
use_cache: Optional[bool] = False,
|
725 |
-
**kwargs,
|
726 |
-
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
727 |
-
"""
|
728 |
-
Forward pass of the JetMoEBlock module.
|
729 |
-
|
730 |
-
Args:
|
731 |
-
hidden_states (Optional[torch.FloatTensor]): Input hidden states.
|
732 |
-
layer_past (Optional[Tuple[torch.Tensor]]): Past layer state.
|
733 |
-
attention_mask (Optional[torch.FloatTensor]): Attention mask.
|
734 |
-
head_mask (Optional[torch.FloatTensor]): Head mask.
|
735 |
-
use_cache (Optional[bool]): Whether to use cached states.
|
736 |
-
output_attentions (Optional[bool]): Whether to output attention weights.
|
737 |
-
|
738 |
-
Returns:
|
739 |
-
Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
740 |
-
Tuple containing outputs or optional attention weights.
|
741 |
-
"""
|
742 |
-
# Self Attention
|
743 |
-
attn_output, self_attn_weights, present_key_value, att_aux_loss = self.self_attention(
|
744 |
-
hidden_states=self.input_layernorm(hidden_states),
|
745 |
-
attention_mask=attention_mask,
|
746 |
-
position_ids=position_ids,
|
747 |
-
past_key_value=past_key_value,
|
748 |
-
output_attentions=output_attentions,
|
749 |
-
use_cache=use_cache,
|
750 |
-
)
|
751 |
-
|
752 |
-
hidden_states = hidden_states + attn_output
|
753 |
-
x_mlp, mlp_aux_loss = self.mlp(self.post_attention_layernorm(hidden_states))
|
754 |
-
hidden_states = hidden_states + x_mlp
|
755 |
-
|
756 |
-
outputs = (hidden_states,)
|
757 |
-
|
758 |
-
if output_attentions:
|
759 |
-
outputs += (self_attn_weights,)
|
760 |
-
|
761 |
-
if use_cache:
|
762 |
-
outputs += (present_key_value,)
|
763 |
-
|
764 |
-
outputs += (att_aux_loss + mlp_aux_loss,)
|
765 |
-
|
766 |
-
return outputs
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
class JetMoEPreTrainedModel(PreTrainedModel):
|
771 |
-
"""
|
772 |
-
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
773 |
-
models.
|
774 |
-
"""
|
775 |
-
|
776 |
-
config_class = JetMoEConfig
|
777 |
-
base_model_prefix = "transformer"
|
778 |
-
supports_gradient_checkpointing = True
|
779 |
-
_no_split_modules = ["JetMoEBlock"]
|
780 |
-
_skip_keys_device_placement = "past_key_values"
|
781 |
-
_supports_flash_attn_2 = True
|
782 |
-
_supports_sdpa = True
|
783 |
-
_supports_cache_class = True
|
784 |
-
|
785 |
-
def __init__(self, *inputs, **kwargs):
|
786 |
-
"""
|
787 |
-
Initialize the JetMoEPreTrainedModel.
|
788 |
-
|
789 |
-
Args:
|
790 |
-
*inputs: Variable length input arguments.
|
791 |
-
**kwargs: Keyword arguments.
|
792 |
-
"""
|
793 |
-
super().__init__(*inputs, **kwargs)
|
794 |
-
|
795 |
-
self.gradient_checkpointing = False
|
796 |
-
|
797 |
-
def _init_weights(self, module):
|
798 |
-
"""Initialize the weights."""
|
799 |
-
if isinstance(module, (nn.Linear,)):
|
800 |
-
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
801 |
-
# cf https://github.com/pytorch/pytorch/pull/5617
|
802 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
803 |
-
if module.bias is not None:
|
804 |
-
module.bias.data.zero_()
|
805 |
-
elif isinstance(module, nn.Embedding):
|
806 |
-
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
807 |
-
if module.padding_idx is not None:
|
808 |
-
module.weight.data[module.padding_idx].zero_()
|
809 |
-
elif isinstance(module, nn.LayerNorm):
|
810 |
-
module.bias.data.zero_()
|
811 |
-
module.weight.data.fill_(1.0)
|
812 |
-
|
813 |
-
# def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs={}):
|
814 |
-
# for module in self.modules():
|
815 |
-
# if hasattr(module, "gradient_checkpointing"):
|
816 |
-
# self._set_gradient_checkpointing(
|
817 |
-
# module, True, gradient_checkpointing_kwargs
|
818 |
-
# )
|
819 |
-
|
820 |
-
# def gradient_checkpointing_disable(self):
|
821 |
-
# for module in self.modules():
|
822 |
-
# if hasattr(module, "gradient_checkpointing"):
|
823 |
-
# self._set_gradient_checkpointing(
|
824 |
-
# module, False
|
825 |
-
# )
|
826 |
-
|
827 |
-
# def _set_gradient_checkpointing(
|
828 |
-
# self,
|
829 |
-
# module,
|
830 |
-
# value=False,
|
831 |
-
# gradient_checkpointing_kwargs={"use_reentrant": False},
|
832 |
-
# ):
|
833 |
-
# """
|
834 |
-
# Set gradient checkpointing for the JetMoEModel.
|
835 |
-
|
836 |
-
# Args:
|
837 |
-
# module: The module for which gradient checkpointing is set.
|
838 |
-
# value (bool): Whether to enable gradient checkpointing.
|
839 |
-
# """
|
840 |
-
# self._gradient_checkpointing_func = checkpoint
|
841 |
-
# self.gradient_checkpointing = True
|
842 |
-
# if isinstance(module, JetMoEModel):
|
843 |
-
# module.gradient_checkpointing = value
|
844 |
-
# module.gradient_checkpointing_kwargs = gradient_checkpointing_kwargs
|
845 |
-
# module._gradient_checkpointing_func = checkpoint
|
846 |
-
|
847 |
-
MODULEFORMER_START_DOCSTRING = r"""
|
848 |
-
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
849 |
-
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
850 |
-
behavior.
|
851 |
-
|
852 |
-
Parameters:
|
853 |
-
config ([`JetMoEConfig`]): Model configuration class with all the parameters of the model.
|
854 |
-
Initializing with a config file does not load the weights associated with the model, only the
|
855 |
-
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
856 |
-
"""
|
857 |
-
|
858 |
-
MODULEFORMER_INPUTS_DOCSTRING = r"""
|
859 |
-
Args:
|
860 |
-
input_ids (`torch.LongTensor` of shape `({0})`):
|
861 |
-
Indices of input sequence tokens in the vocabulary.
|
862 |
-
|
863 |
-
Indices can be obtained using [`AutoProcenizer`]. See [`PreTrainedTokenizer.encode`] and
|
864 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
865 |
-
|
866 |
-
[What are input IDs?](../glossary#input-ids)
|
867 |
-
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
868 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
869 |
-
|
870 |
-
- 1 for tokens that are **not masked**,
|
871 |
-
- 0 for tokens that are **masked**.
|
872 |
-
|
873 |
-
[What are attention masks?](../glossary#attention-mask)
|
874 |
-
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
875 |
-
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
876 |
-
1]`:
|
877 |
-
|
878 |
-
- 0 corresponds to a *sentence A* token,
|
879 |
-
- 1 corresponds to a *sentence B* token.
|
880 |
-
|
881 |
-
[What are token type IDs?](../glossary#token-type-ids)
|
882 |
-
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
883 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
884 |
-
config.n_positions - 1]`.
|
885 |
-
|
886 |
-
[What are position IDs?](../glossary#position-ids)
|
887 |
-
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
888 |
-
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
889 |
-
|
890 |
-
- 1 indicates the head is **not masked**,
|
891 |
-
- 0 indicates the head is **masked**.
|
892 |
-
|
893 |
-
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
894 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
895 |
-
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
896 |
-
model's internal embedding lookup matrix.
|
897 |
-
output_attentions (`bool`, *optional*):
|
898 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
899 |
-
tensors for more detail.
|
900 |
-
output_hidden_states (`bool`, *optional*):
|
901 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
902 |
-
more detail.
|
903 |
-
return_dict (`bool`, *optional*):
|
904 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
905 |
-
"""
|
906 |
-
|
907 |
-
|
908 |
-
@add_start_docstrings(
|
909 |
-
"The bare JetMoE Model outputting raw hidden-states without any specific head on top.",
|
910 |
-
MODULEFORMER_START_DOCSTRING,
|
911 |
-
)
|
912 |
-
class JetMoEModel(JetMoEPreTrainedModel):
|
913 |
-
"""
|
914 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JetMoEBlock`]
|
915 |
-
|
916 |
-
Args:
|
917 |
-
config: JetMoEConfig
|
918 |
-
"""
|
919 |
-
|
920 |
-
def __init__(self, config: JetMoEConfig):
|
921 |
-
super().__init__(config)
|
922 |
-
self.padding_idx = config.pad_token_id
|
923 |
-
self.vocab_size = config.vocab_size
|
924 |
-
|
925 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
926 |
-
self.layers = nn.ModuleList(
|
927 |
-
[JetMoEBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
928 |
-
)
|
929 |
-
self._attn_implementation = config._attn_implementation
|
930 |
-
self.norm = JetMoERMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
931 |
-
|
932 |
-
self.gradient_checkpointing = False
|
933 |
-
# Initialize weights and apply final processing
|
934 |
-
self.post_init()
|
935 |
-
|
936 |
-
def get_input_embeddings(self):
|
937 |
-
return self.embed_tokens
|
938 |
-
|
939 |
-
def set_input_embeddings(self, value):
|
940 |
-
self.embed_tokens = value
|
941 |
-
|
942 |
-
@add_start_docstrings_to_model_forward(MODULEFORMER_INPUTS_DOCSTRING)
|
943 |
-
def forward(
|
944 |
-
self,
|
945 |
-
input_ids: torch.LongTensor = None,
|
946 |
-
attention_mask: Optional[torch.Tensor] = None,
|
947 |
-
position_ids: Optional[torch.LongTensor] = None,
|
948 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
949 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
950 |
-
use_cache: Optional[bool] = None,
|
951 |
-
output_attentions: Optional[bool] = None,
|
952 |
-
output_hidden_states: Optional[bool] = None,
|
953 |
-
return_dict: Optional[bool] = None,
|
954 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
955 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
956 |
-
output_hidden_states = (
|
957 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
958 |
-
)
|
959 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
960 |
-
|
961 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
962 |
-
|
963 |
-
# retrieve input_ids and inputs_embeds
|
964 |
-
if input_ids is not None and inputs_embeds is not None:
|
965 |
-
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
966 |
-
elif input_ids is not None:
|
967 |
-
batch_size, seq_length = input_ids.shape
|
968 |
-
elif inputs_embeds is not None:
|
969 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
970 |
-
else:
|
971 |
-
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
972 |
-
|
973 |
-
if self.gradient_checkpointing and self.training:
|
974 |
-
if use_cache:
|
975 |
-
logger.warning_once(
|
976 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
977 |
-
)
|
978 |
-
use_cache = False
|
979 |
-
|
980 |
-
past_key_values_length = 0
|
981 |
-
|
982 |
-
if use_cache:
|
983 |
-
use_legacy_cache = not isinstance(past_key_values, Cache)
|
984 |
-
if use_legacy_cache:
|
985 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
986 |
-
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
987 |
-
|
988 |
-
if position_ids is None:
|
989 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
990 |
-
position_ids = torch.arange(
|
991 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
992 |
-
)
|
993 |
-
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
994 |
-
else:
|
995 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
996 |
-
|
997 |
-
if inputs_embeds is None:
|
998 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
999 |
-
|
1000 |
-
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1001 |
-
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1002 |
-
if is_padding_right:
|
1003 |
-
raise ValueError(
|
1004 |
-
"You are attempting to perform batched generation with padding_side='right'"
|
1005 |
-
" this may lead to unexpected behaviour for Flash Attention version of JetMoE. Make sure to "
|
1006 |
-
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1007 |
-
)
|
1008 |
-
|
1009 |
-
if self._attn_implementation == "flash_attention_2":
|
1010 |
-
# 2d mask is passed through the layers
|
1011 |
-
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1012 |
-
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1013 |
-
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1014 |
-
# the manual implementation that requires a 4D causal mask in all cases.
|
1015 |
-
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1016 |
-
attention_mask,
|
1017 |
-
(batch_size, seq_length),
|
1018 |
-
inputs_embeds,
|
1019 |
-
past_key_values_length,
|
1020 |
-
)
|
1021 |
-
else:
|
1022 |
-
# 4d mask is passed through the layers
|
1023 |
-
attention_mask = _prepare_4d_causal_attention_mask(
|
1024 |
-
attention_mask,
|
1025 |
-
(batch_size, seq_length),
|
1026 |
-
inputs_embeds,
|
1027 |
-
past_key_values_length,
|
1028 |
-
)
|
1029 |
-
|
1030 |
-
hidden_states = inputs_embeds
|
1031 |
-
|
1032 |
-
# decoder layers
|
1033 |
-
all_hidden_states = () if output_hidden_states else None
|
1034 |
-
all_self_attns = () if output_attentions else None
|
1035 |
-
next_decoder_cache = None
|
1036 |
-
|
1037 |
-
aux_loss = 0
|
1038 |
-
for decoder_layer in self.layers:
|
1039 |
-
if output_hidden_states:
|
1040 |
-
all_hidden_states += (hidden_states,)
|
1041 |
-
|
1042 |
-
# hidden_states: Optional[torch.FloatTensor],
|
1043 |
-
# position_ids: Optional[torch.LongTensor] = None,
|
1044 |
-
# past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1045 |
-
# attention_mask: Optional[torch.FloatTensor] = None,
|
1046 |
-
# output_attentions: Optional[bool] = False,
|
1047 |
-
# use_cache: Optional[bool] = False,
|
1048 |
-
|
1049 |
-
if self.gradient_checkpointing and self.training:
|
1050 |
-
layer_outputs = self._gradient_checkpointing_func(
|
1051 |
-
#decoder_layer.__call__,
|
1052 |
-
decoder_layer,
|
1053 |
-
hidden_states,
|
1054 |
-
position_ids,
|
1055 |
-
past_key_values,
|
1056 |
-
attention_mask,
|
1057 |
-
output_attentions,
|
1058 |
-
use_cache,
|
1059 |
-
use_reentrant=False,
|
1060 |
-
)
|
1061 |
-
else:
|
1062 |
-
layer_outputs = decoder_layer(
|
1063 |
-
hidden_states,
|
1064 |
-
attention_mask=attention_mask,
|
1065 |
-
position_ids=position_ids,
|
1066 |
-
past_key_value=past_key_values,
|
1067 |
-
output_attentions=output_attentions,
|
1068 |
-
use_cache=use_cache,
|
1069 |
-
)
|
1070 |
-
|
1071 |
-
hidden_states = layer_outputs[0]
|
1072 |
-
|
1073 |
-
if use_cache:
|
1074 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1075 |
-
|
1076 |
-
if output_attentions:
|
1077 |
-
all_self_attns += (layer_outputs[1],)
|
1078 |
-
|
1079 |
-
aux_loss += layer_outputs[-1]
|
1080 |
-
|
1081 |
-
hidden_states = self.norm(hidden_states)
|
1082 |
-
|
1083 |
-
# add hidden states from the last decoder layer
|
1084 |
-
if output_hidden_states:
|
1085 |
-
all_hidden_states += (hidden_states,)
|
1086 |
-
|
1087 |
-
next_cache = None
|
1088 |
-
if use_cache:
|
1089 |
-
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1090 |
-
|
1091 |
-
if not return_dict:
|
1092 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1093 |
-
return JetMoEBaseModelOutputWithPast(
|
1094 |
-
last_hidden_state=hidden_states,
|
1095 |
-
past_key_values=next_cache,
|
1096 |
-
hidden_states=all_hidden_states,
|
1097 |
-
attentions=all_self_attns,
|
1098 |
-
aux_loss=aux_loss,
|
1099 |
-
)
|
1100 |
-
|
1101 |
-
|
1102 |
-
class JetMoEForCausalLM(JetMoEPreTrainedModel):
|
1103 |
-
_tied_weights_keys = ["lm_head.weight"]
|
1104 |
-
|
1105 |
-
def __init__(self, config):
|
1106 |
-
super().__init__(config)
|
1107 |
-
self.model = JetMoEModel(config)
|
1108 |
-
self.vocab_size = config.vocab_size
|
1109 |
-
self.aux_loss_coef = getattr(config, 'aux_loss_coef', 0.01)
|
1110 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1111 |
-
|
1112 |
-
# Initialize weights and apply final processing
|
1113 |
-
self.post_init()
|
1114 |
-
|
1115 |
-
def get_input_embeddings(self):
|
1116 |
-
return self.model.embed_tokens
|
1117 |
-
|
1118 |
-
def set_input_embeddings(self, value):
|
1119 |
-
self.model.embed_tokens = value
|
1120 |
-
|
1121 |
-
def get_output_embeddings(self):
|
1122 |
-
return self.lm_head
|
1123 |
-
|
1124 |
-
def set_output_embeddings(self, new_embeddings):
|
1125 |
-
self.lm_head = new_embeddings
|
1126 |
-
|
1127 |
-
def set_decoder(self, decoder):
|
1128 |
-
self.model = decoder
|
1129 |
-
|
1130 |
-
def get_decoder(self):
|
1131 |
-
return self.model
|
1132 |
-
|
1133 |
-
@add_start_docstrings_to_model_forward(MODULEFORMER_INPUTS_DOCSTRING)
|
1134 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1135 |
-
def forward(
|
1136 |
-
self,
|
1137 |
-
input_ids: torch.LongTensor = None,
|
1138 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1139 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1140 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1141 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1142 |
-
labels: Optional[torch.LongTensor] = None,
|
1143 |
-
use_cache: Optional[bool] = None,
|
1144 |
-
output_attentions: Optional[bool] = None,
|
1145 |
-
output_hidden_states: Optional[bool] = None,
|
1146 |
-
return_dict: Optional[bool] = None,
|
1147 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1148 |
-
r"""
|
1149 |
-
Args:
|
1150 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1151 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1152 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1153 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1154 |
-
|
1155 |
-
Returns:
|
1156 |
-
"""
|
1157 |
-
|
1158 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1159 |
-
output_hidden_states = (
|
1160 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1161 |
-
)
|
1162 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1163 |
-
|
1164 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1165 |
-
outputs = self.model(
|
1166 |
-
input_ids=input_ids,
|
1167 |
-
attention_mask=attention_mask,
|
1168 |
-
position_ids=position_ids,
|
1169 |
-
past_key_values=past_key_values,
|
1170 |
-
inputs_embeds=inputs_embeds,
|
1171 |
-
use_cache=use_cache,
|
1172 |
-
output_attentions=output_attentions,
|
1173 |
-
output_hidden_states=output_hidden_states,
|
1174 |
-
return_dict=return_dict,
|
1175 |
-
)
|
1176 |
-
|
1177 |
-
hidden_states = outputs[0]
|
1178 |
-
logits = self.lm_head(hidden_states)
|
1179 |
-
logits = logits.float()
|
1180 |
-
|
1181 |
-
loss = None
|
1182 |
-
if labels is not None:
|
1183 |
-
# Shift so that tokens < n predict n
|
1184 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
1185 |
-
shift_labels = labels[..., 1:].contiguous()
|
1186 |
-
# Flatten the tokens
|
1187 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1188 |
-
shift_labels = shift_labels.view(-1)
|
1189 |
-
# Ensure tensors are on the same device
|
1190 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
1191 |
-
loss_fct = CrossEntropyLoss()
|
1192 |
-
loss = loss_fct(shift_logits, shift_labels)
|
1193 |
-
|
1194 |
-
if not return_dict:
|
1195 |
-
output = (logits,) + outputs[1:]
|
1196 |
-
return (loss,) + output if loss is not None else output
|
1197 |
-
|
1198 |
-
if labels is not None and self.model.training:
|
1199 |
-
loss += self.aux_loss_coef * outputs.aux_loss.to(loss.device)
|
1200 |
-
|
1201 |
-
return JetMoECausalLMOutputWithPast(
|
1202 |
-
loss=loss,
|
1203 |
-
logits=logits,
|
1204 |
-
past_key_values=outputs.past_key_values,
|
1205 |
-
hidden_states=outputs.hidden_states,
|
1206 |
-
attentions=outputs.attentions,
|
1207 |
-
aux_loss=outputs.aux_loss,
|
1208 |
-
)
|
1209 |
-
|
1210 |
-
def prepare_inputs_for_generation(
|
1211 |
-
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1212 |
-
):
|
1213 |
-
# Omit tokens covered by past_key_values
|
1214 |
-
if past_key_values is not None:
|
1215 |
-
if isinstance(past_key_values, Cache):
|
1216 |
-
cache_length = past_key_values.get_seq_length()
|
1217 |
-
past_length = past_key_values.seen_tokens
|
1218 |
-
max_cache_length = past_key_values.get_max_length()
|
1219 |
-
else:
|
1220 |
-
cache_length = past_length = past_key_values[0][0].shape[2]
|
1221 |
-
max_cache_length = None
|
1222 |
-
|
1223 |
-
# Keep only the unprocessed tokens:
|
1224 |
-
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1225 |
-
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1226 |
-
# input)
|
1227 |
-
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1228 |
-
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1229 |
-
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1230 |
-
# input_ids based on the past_length.
|
1231 |
-
elif past_length < input_ids.shape[1]:
|
1232 |
-
input_ids = input_ids[:, past_length:]
|
1233 |
-
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1234 |
-
|
1235 |
-
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1236 |
-
if (
|
1237 |
-
max_cache_length is not None
|
1238 |
-
and attention_mask is not None
|
1239 |
-
and cache_length + input_ids.shape[1] > max_cache_length
|
1240 |
-
):
|
1241 |
-
attention_mask = attention_mask[:, -max_cache_length:]
|
1242 |
-
|
1243 |
-
position_ids = kwargs.get("position_ids", None)
|
1244 |
-
if attention_mask is not None and position_ids is None:
|
1245 |
-
# create position_ids on the fly for batch generation
|
1246 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1247 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1248 |
-
if past_key_values:
|
1249 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1250 |
-
|
1251 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1252 |
-
if inputs_embeds is not None and past_key_values is None:
|
1253 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
1254 |
-
else:
|
1255 |
-
model_inputs = {"input_ids": input_ids}
|
1256 |
-
|
1257 |
-
model_inputs.update(
|
1258 |
-
{
|
1259 |
-
"position_ids": position_ids,
|
1260 |
-
"past_key_values": past_key_values,
|
1261 |
-
"use_cache": kwargs.get("use_cache"),
|
1262 |
-
"attention_mask": attention_mask,
|
1263 |
-
}
|
1264 |
-
)
|
1265 |
-
return model_inputs
|
1266 |
-
|
1267 |
-
@staticmethod
|
1268 |
-
def _reorder_cache(past_key_values, beam_idx):
|
1269 |
-
reordered_past = ()
|
1270 |
-
for layer_past in past_key_values:
|
1271 |
-
reordered_past += (
|
1272 |
-
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1273 |
-
)
|
1274 |
-
return reordered_past
|
1275 |
-
|
1276 |
-
|
1277 |
-
@add_start_docstrings(
|
1278 |
-
"""
|
1279 |
-
The JetMoE Model transformer with a sequence classification head on top (linear layer).
|
1280 |
-
|
1281 |
-
[`JetMoEForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1282 |
-
(e.g. GPT-2) do.
|
1283 |
-
|
1284 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1285 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1286 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1287 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1288 |
-
each row of the batch).
|
1289 |
-
""",
|
1290 |
-
MODULEFORMER_START_DOCSTRING,
|
1291 |
-
)
|
1292 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->JetMoE, LLAMA->MODULEFORMER
|
1293 |
-
class JetMoEForSequenceClassification(JetMoEPreTrainedModel):
|
1294 |
-
def __init__(self, config):
|
1295 |
-
super().__init__(config)
|
1296 |
-
self.num_labels = config.num_labels
|
1297 |
-
self.model = JetMoEModel(config)
|
1298 |
-
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1299 |
-
|
1300 |
-
# Initialize weights and apply final processing
|
1301 |
-
self.post_init()
|
1302 |
-
|
1303 |
-
def get_input_embeddings(self):
|
1304 |
-
return self.model.embed_tokens
|
1305 |
-
|
1306 |
-
def set_input_embeddings(self, value):
|
1307 |
-
self.model.embed_tokens = value
|
1308 |
-
|
1309 |
-
@add_start_docstrings_to_model_forward(MODULEFORMER_INPUTS_DOCSTRING)
|
1310 |
-
def forward(
|
1311 |
-
self,
|
1312 |
-
input_ids: torch.LongTensor = None,
|
1313 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1314 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1315 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1316 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1317 |
-
labels: Optional[torch.LongTensor] = None,
|
1318 |
-
use_cache: Optional[bool] = None,
|
1319 |
-
output_attentions: Optional[bool] = None,
|
1320 |
-
output_hidden_states: Optional[bool] = None,
|
1321 |
-
return_dict: Optional[bool] = None,
|
1322 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1323 |
-
r"""
|
1324 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1325 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1326 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1327 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1328 |
-
"""
|
1329 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1330 |
-
|
1331 |
-
transformer_outputs = self.model(
|
1332 |
-
input_ids,
|
1333 |
-
attention_mask=attention_mask,
|
1334 |
-
position_ids=position_ids,
|
1335 |
-
past_key_values=past_key_values,
|
1336 |
-
inputs_embeds=inputs_embeds,
|
1337 |
-
use_cache=use_cache,
|
1338 |
-
output_attentions=output_attentions,
|
1339 |
-
output_hidden_states=output_hidden_states,
|
1340 |
-
return_dict=return_dict,
|
1341 |
-
)
|
1342 |
-
hidden_states = transformer_outputs[0]
|
1343 |
-
logits = self.score(hidden_states)
|
1344 |
-
|
1345 |
-
if input_ids is not None:
|
1346 |
-
batch_size = input_ids.shape[0]
|
1347 |
-
else:
|
1348 |
-
batch_size = inputs_embeds.shape[0]
|
1349 |
-
|
1350 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
1351 |
-
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1352 |
-
if self.config.pad_token_id is None:
|
1353 |
-
sequence_lengths = -1
|
1354 |
-
else:
|
1355 |
-
if input_ids is not None:
|
1356 |
-
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1357 |
-
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1358 |
-
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1359 |
-
sequence_lengths = sequence_lengths.to(logits.device)
|
1360 |
-
else:
|
1361 |
-
sequence_lengths = -1
|
1362 |
-
|
1363 |
-
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1364 |
-
|
1365 |
-
loss = None
|
1366 |
-
if labels is not None:
|
1367 |
-
labels = labels.to(logits.device)
|
1368 |
-
if self.config.problem_type is None:
|
1369 |
-
if self.num_labels == 1:
|
1370 |
-
self.config.problem_type = "regression"
|
1371 |
-
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1372 |
-
self.config.problem_type = "single_label_classification"
|
1373 |
-
else:
|
1374 |
-
self.config.problem_type = "multi_label_classification"
|
1375 |
-
|
1376 |
-
if self.config.problem_type == "regression":
|
1377 |
-
loss_fct = MSELoss()
|
1378 |
-
if self.num_labels == 1:
|
1379 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1380 |
-
else:
|
1381 |
-
loss = loss_fct(pooled_logits, labels)
|
1382 |
-
elif self.config.problem_type == "single_label_classification":
|
1383 |
-
loss_fct = CrossEntropyLoss()
|
1384 |
-
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1385 |
-
elif self.config.problem_type == "multi_label_classification":
|
1386 |
-
loss_fct = BCEWithLogitsLoss()
|
1387 |
-
loss = loss_fct(pooled_logits, labels)
|
1388 |
-
if not return_dict:
|
1389 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
1390 |
-
return ((loss,) + output) if loss is not None else output
|
1391 |
-
|
1392 |
-
return JetMoESequenceClassifierOutputWithPast(
|
1393 |
-
loss=loss,
|
1394 |
-
logits=pooled_logits,
|
1395 |
-
past_key_values=transformer_outputs.past_key_values,
|
1396 |
-
hidden_states=transformer_outputs.hidden_states,
|
1397 |
-
attentions=transformer_outputs.attentions,
|
1398 |
-
aux_loss=transformer_outputs.aux_loss,
|
1399 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|