Text-to-Image
Diffusers
lora
stable-diffusion
clementchadebec onurxtasar commited on
Commit
b5398cf
1 Parent(s): 6de1dec

Update README.md (#1)

Browse files

- Update README.md (8b5a2b0b11415ee643df4485b88a6b360fdbcecb)


Co-authored-by: Onur <[email protected]>

Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -11,8 +11,7 @@ inference: False
11
  ---
12
  # ⚡ FlashDiffusion: FlashSD ⚡
13
 
14
-
15
- Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.*
16
  This model is a **26.4M** LoRA distilled version of SD1.5 model that is able to generate images in **2-4 steps**. The main purpose of this model is to reproduce the main results of the paper.
17
 
18
 
@@ -54,14 +53,16 @@ image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
54
  </p>
55
 
56
  # Training Details
57
- The model was trained for 20k iterations on 2 H100 GPUs (representing approx. **13 hours** of training). Please refer to the [paper]() for further parameters details.
58
 
59
- **Metrics on COCO 2017 validation set**
60
  - FID-5k: 22.6 (2 NFE) / 22.5 (4 NFE)
61
  - CLIP Score (ViT-g/14): 0.306 (2 NFE) / 0.311 (4 NFE)
62
 
63
- **Metrics on COCO 2014 validation**
 
64
  - FID-30k: 12.07 (2 NFE)
65
 
 
66
  ## License
67
  This model is released under the the Creative Commons BY-NC license.
 
11
  ---
12
  # ⚡ FlashDiffusion: FlashSD ⚡
13
 
14
+ Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin.*
 
15
  This model is a **26.4M** LoRA distilled version of SD1.5 model that is able to generate images in **2-4 steps**. The main purpose of this model is to reproduce the main results of the paper.
16
 
17
 
 
53
  </p>
54
 
55
  # Training Details
56
+ The model was trained for 20k iterations on 2 H100 GPUs (representing approx. **26 hours** of training). Please refer to the [paper]() for further parameters details.
57
 
58
+ **Metrics on COCO 2017 validation set (Table 1)**
59
  - FID-5k: 22.6 (2 NFE) / 22.5 (4 NFE)
60
  - CLIP Score (ViT-g/14): 0.306 (2 NFE) / 0.311 (4 NFE)
61
 
62
+ **Metrics on COCO 2014 validation (Table 2)**
63
+ - FID-30k: 12.41 (4 NFE)
64
  - FID-30k: 12.07 (2 NFE)
65
 
66
+
67
  ## License
68
  This model is released under the the Creative Commons BY-NC license.