File size: 1,923 Bytes
a15cf5d 18ac55a a15cf5d 18ac55a a15cf5d 18ac55a a15cf5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: jan-hq/LlamaCorn-1.1B-Chat
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- jan-hq/systemchat_binarized
- jan-hq/youtube_transcripts_qa
- jan-hq/youtube_transcripts_qa_ext
model-index:
- name: TinyJensen-1.1B-Chat
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TinyJensen-1.1B-Chat
This model is a fine-tuned version of [jan-hq/LlamaCorn-1.1B-Chat](https://huggingface.co/jan-hq/LlamaCorn-1.1B-Chat) on the jan-hq/systemchat_binarized, the jan-hq/youtube_transcripts_qa and the jan-hq/youtube_transcripts_qa_ext datasets.
It achieves the following results on the evaluation set:
- Loss: 0.8771
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8226 | 1.0 | 207 | 0.8232 |
| 0.6608 | 2.0 | 414 | 0.7941 |
| 0.526 | 3.0 | 621 | 0.8186 |
| 0.4388 | 4.0 | 829 | 0.8643 |
| 0.3888 | 4.99 | 1035 | 0.8771 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0
|