File size: 4,898 Bytes
5b9d863
fb64cc3
5b9d863
fb64cc3
 
5b9d863
fb64cc3
5b9d863
fb64cc3
8a2cdb8
fb64cc3
 
 
 
 
9fe3558
8a2cdb8
 
 
 
c2b9512
9fe3558
 
6e90fa9
5b9d863
 
fb64cc3
 
5b9d863
fb64cc3
 
 
 
 
 
 
 
 
717d229
 
fb64cc3
 
 
 
 
 
cd5b81b
 
fb64cc3
 
 
5b9d863
fb64cc3
 
 
 
 
 
 
5b9d863
fb64cc3
5b9d863
fb64cc3
 
5b9d863
fb64cc3
5b9d863
fb64cc3
 
 
 
5b9d863
fb64cc3
5b9d863
fb64cc3
 
 
 
 
 
 
 
 
5b9d863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb64cc3
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: apache-2.0
tags:
- alignment-handbook
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:

- jan-hq/bagel_sft_binarized
- jan-hq/dolphin_binarized
- jan-hq/openhermes_binarized
- jan-hq/bagel_dpo_binarized
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
pipeline_tag: text-generation
inference:
  parameters:
    temperature: 0.7
    max_new_tokens: 40
widget:
  - messages:
      - role: user
        content: Tell me about NVIDIA in 20 words
---

<!-- header start -->
<!-- 200823 -->

<div style="width: auto; margin-left: auto; margin-right: auto"
>
<img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner"
 style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

<p align="center">
    <a href="https://jan.ai/">Jan</a
> 
    - <a
 href="https://discord.gg/AsJ8krTT3N">Discord</a>
</p>
<!-- header end -->

# Model description

- Finetuned [TinyLlama-1.1B](TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) further for handling simple tasks and have acceptable conversational quality
- Utilized high-quality opensource dataset
- Can be run on [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM) on consumer devices
- Can fit into laptop dGPUs with as little as >=6gb of VRAM

# Prompt template

ChatML
```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

# Run this model
You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux.

Jan is an open source, ChatGPT alternative that is:

- ๐Ÿ’ป  **100% offline on your machine**: Your conversations remain confidential, and visible only to you.
- ๐Ÿ—‚๏ธ **
An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time.
- ๐ŸŒ **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints

- ๐ŸŒ **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png)


# About Jan
Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones.

Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life.

# LlamaCorn-1.1B-Chat

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.9958        | 0.03  | 100   | 1.0003          | -0.0002        | -0.0002          | 0.4930             | -0.0001         | -180.9232      | -195.6078    | -2.6876         | -2.6924       |
| 0.9299        | 1.02  | 3500  | 0.9439          | -0.1570        | -0.2195          | 0.5770             | 0.0625          | -183.1160      | -197.1755    | -2.6612         | -2.6663       |
| 0.9328        | 2.01  | 6900  | 0.9313          | -0.2127        | -0.2924          | 0.5884             | 0.0798          | -183.8456      | -197.7321    | -2.6296         | -2.6352       |
| 0.9321        | 2.98  | 10200 | 0.9305          | -0.2149        | -0.2955          | 0.5824             | 0.0805          | -183.8759      | -197.7545    | -2.6439         | -2.6493       |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jan-hq__LlamaCorn-1.1B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |36.94|
|AI2 Reasoning Challenge (25-Shot)|34.13|
|HellaSwag (10-Shot)              |59.33|
|MMLU (5-Shot)                    |29.01|
|TruthfulQA (0-shot)              |36.78|
|Winogrande (5-shot)              |61.96|
|GSM8k (5-shot)                   | 0.45|