--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7339 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9233 | 1.0 | 225 | 1.7014 | 0.49 | | 0.8822 | 2.0 | 450 | 1.0546 | 0.68 | | 0.676 | 3.0 | 675 | 0.7165 | 0.78 | | 0.8326 | 4.0 | 900 | 0.5948 | 0.79 | | 0.3184 | 5.0 | 1125 | 0.5484 | 0.81 | | 0.6154 | 6.0 | 1350 | 0.5977 | 0.83 | | 0.0305 | 7.0 | 1575 | 0.6213 | 0.81 | | 0.0154 | 8.0 | 1800 | 0.7479 | 0.79 | | 0.086 | 9.0 | 2025 | 0.6926 | 0.84 | | 0.0103 | 10.0 | 2250 | 0.7339 | 0.82 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3