--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7913 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.182 | 1.0 | 113 | 2.0488 | 0.51 | | 1.5191 | 2.0 | 226 | 1.4777 | 0.63 | | 1.1082 | 3.0 | 339 | 1.0471 | 0.74 | | 1.1174 | 4.0 | 452 | 0.9705 | 0.71 | | 0.5903 | 5.0 | 565 | 0.7648 | 0.78 | | 0.4231 | 6.0 | 678 | 0.6599 | 0.79 | | 0.3242 | 7.0 | 791 | 0.5716 | 0.85 | | 0.0799 | 8.0 | 904 | 0.7228 | 0.8 | | 0.2491 | 9.0 | 1017 | 0.5883 | 0.85 | | 0.0403 | 10.0 | 1130 | 0.7826 | 0.83 | | 0.0093 | 11.0 | 1243 | 0.7241 | 0.86 | | 0.1129 | 12.0 | 1356 | 0.6913 | 0.85 | | 0.0051 | 13.0 | 1469 | 0.7453 | 0.87 | | 0.0046 | 14.0 | 1582 | 0.7348 | 0.86 | | 0.0039 | 15.0 | 1695 | 0.7435 | 0.85 | | 0.0031 | 16.0 | 1808 | 0.7868 | 0.88 | | 0.0523 | 17.0 | 1921 | 0.7812 | 0.84 | | 0.0029 | 18.0 | 2034 | 0.7900 | 0.84 | | 0.0031 | 19.0 | 2147 | 0.7909 | 0.84 | | 0.0038 | 20.0 | 2260 | 0.7913 | 0.84 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3