--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ``` python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import re model_id = "jaeyoungk/albatross" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B-Instruct') model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map='auto') def gen(x): system_prompt = f""" Make a trading decision based on the following data. Please respond with a JSON object in the following format: {{"investment_decision": string, "summary_reason": string, "short_memory_index": number, "middle_memory_index": number, "long_memory_index": number, "reflection_memory_index": number}} investment_decision must always be one of {{buy, sell, hold}} """ # Tokenizing the input and generating the output inputs = tokenizer( [ f"<|start_header_id|>system<|end_header_id|>{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>{x}<|end_header_id|>" ], return_tensors = "pt").to("cuda") gened = model.generate( **inputs, max_new_tokens=256, early_stopping=True, ) full_text = tokenizer.decode(gened[0]) # Finding the second occurrence of 'user<|end_header_id|' start_phrase = "user<|end_header_id|>" first_occurrence = full_text.find(start_phrase) second_occurrence = full_text.find(start_phrase, first_occurrence + len(start_phrase)) if second_occurrence == -1: # If the second occurrence is not found, fallback to using the first occurrence start_idx = first_occurrence + len(start_phrase) else: start_idx = second_occurrence + len(start_phrase) # Find the index of the next special token after the start index end_idx = full_text.find('\\<|eot_id|', start_idx) # Extract the text between start_idx and end_idx extracted_text = full_text[start_idx:end_idx].strip() return extracted_text # test the model gen('input your text here') ``` python ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]