Update README.md
Browse files
README.md
CHANGED
@@ -35,25 +35,35 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
import re
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def gen(x):
|
44 |
system_prompt = f"""
|
45 |
Make a trading decision based on the following data.
|
46 |
Please respond with a JSON object in the following format:
|
47 |
{{"investment_decision": string, "summary_reason": string, "short_memory_index": number, "middle_memory_index": number, "long_memory_index": number, "reflection_memory_index": number}}
|
48 |
investment_decision must always be one of {{buy, sell, hold}}
|
49 |
-
Print the memory index value to 4 decimal places. If it exceeds, round up.
|
50 |
"""
|
51 |
|
52 |
# Tokenizing the input and generating the output
|
53 |
|
54 |
inputs = tokenizer(
|
55 |
[
|
56 |
-
f"system{system_prompt}user{x}"
|
57 |
], return_tensors = "pt").to("cuda")
|
58 |
|
59 |
|
@@ -66,36 +76,27 @@ def gen(x):
|
|
66 |
|
67 |
full_text = tokenizer.decode(gened[0])
|
68 |
|
69 |
-
#
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Find the index for the end phrase
|
83 |
-
end_phrase = "\"reflection_memory_index\":"
|
84 |
-
end_idx = full_text.find(end_phrase, start_idx)
|
85 |
-
|
86 |
-
if end_idx == -1:
|
87 |
-
return "No valid reflection_memory_index found in the output."
|
88 |
-
|
89 |
-
# Find the end of the reflection_memory_index value
|
90 |
-
end_idx = full_text.find('}', end_idx)
|
91 |
-
if end_idx == -1:
|
92 |
-
return "No closing bracket found in the output."
|
93 |
|
94 |
# Extract the text between start_idx and end_idx
|
95 |
-
extracted_text = full_text[start_idx:end_idx
|
96 |
|
97 |
return extracted_text
|
98 |
|
|
|
|
|
99 |
|
100 |
|
101 |
### Direct Use
|
|
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
+
import torch
|
39 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
40 |
import re
|
41 |
|
42 |
+
model_id = "jaeyoungk/albatross" # safetensors 컨버팅된 레포
|
43 |
+
bnb_config = BitsAndBytesConfig(
|
44 |
+
load_in_4bit=True,
|
45 |
+
bnb_4bit_use_double_quant=True,
|
46 |
+
bnb_4bit_quant_type="nf4",
|
47 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
48 |
+
)
|
49 |
+
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Meta-Llama-3-8B-Instruct')
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map='auto')
|
52 |
+
|
53 |
+
|
54 |
def gen(x):
|
55 |
system_prompt = f"""
|
56 |
Make a trading decision based on the following data.
|
57 |
Please respond with a JSON object in the following format:
|
58 |
{{"investment_decision": string, "summary_reason": string, "short_memory_index": number, "middle_memory_index": number, "long_memory_index": number, "reflection_memory_index": number}}
|
59 |
investment_decision must always be one of {{buy, sell, hold}}
|
|
|
60 |
"""
|
61 |
|
62 |
# Tokenizing the input and generating the output
|
63 |
|
64 |
inputs = tokenizer(
|
65 |
[
|
66 |
+
f"<|start_header_id|>system<|end_header_id|>{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>{x}<|end_header_id|>"
|
67 |
], return_tensors = "pt").to("cuda")
|
68 |
|
69 |
|
|
|
76 |
|
77 |
full_text = tokenizer.decode(gened[0])
|
78 |
|
79 |
+
# Finding the second occurrence of 'user<|end_header_id|'
|
80 |
+
start_phrase = "user<|end_header_id|>"
|
81 |
+
first_occurrence = full_text.find(start_phrase)
|
82 |
+
second_occurrence = full_text.find(start_phrase, first_occurrence + len(start_phrase))
|
83 |
+
|
84 |
+
if second_occurrence == -1:
|
85 |
+
# If the second occurrence is not found, fallback to using the first occurrence
|
86 |
+
start_idx = first_occurrence + len(start_phrase)
|
87 |
+
else:
|
88 |
+
start_idx = second_occurrence + len(start_phrase)
|
89 |
+
|
90 |
+
# Find the index of the next special token after the start index
|
91 |
+
end_idx = full_text.find('\\<|eot_id|', start_idx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# Extract the text between start_idx and end_idx
|
94 |
+
extracted_text = full_text[start_idx:end_idx].strip()
|
95 |
|
96 |
return extracted_text
|
97 |
|
98 |
+
gen('input your text here')
|
99 |
+
|
100 |
|
101 |
|
102 |
### Direct Use
|