--- tags: - generated_from_trainer base_model: airesearch/wangchanberta-base-att-spm-uncased metrics: - accuracy model-index: - name: fine-tune-wangchanberta-SABINA-split-headline1 results: [] --- # fine-tune-wangchanberta-SABINA-split-headline1 This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0956 - Accuracy: 0.3861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0889 | 1.0 | 26 | 1.1080 | 0.3267 | | 1.0772 | 2.0 | 52 | 1.0933 | 0.4010 | | 1.0674 | 3.0 | 78 | 1.0991 | 0.3911 | | 1.0573 | 4.0 | 104 | 1.0956 | 0.3861 | | 1.0627 | 5.0 | 130 | 1.0963 | 0.3911 | | 1.0557 | 6.0 | 156 | 1.1152 | 0.3960 | | 1.0412 | 7.0 | 182 | 1.0956 | 0.3861 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1